Reduction of Representations of $S U_{m n}$ with respect to the Subgroup $S U_{m} \otimes S U_{n}$

C. R. Hagen* \dagger
Physics Department, Imperial College, London, England
AND
A. J. Macfarlane \ddagger
Department of Physics, Syracuse University, Syracuse, New York
(Received 24 December 1964)

Abstract

With a view to application to theories such as the Wigner supermultiplet theory of nuclear structure and its recent extension into the domain of particle physics, the reduction of representations of the special unitary group $S U_{m n}$ into representations of its $S U_{m} \otimes S U_{n}$ subgroup is considered. Proof is given of the result, that, in the case of a representation of $S U_{m n}$ of plurality type $p_{m n}$, this reduction yields only those irreducible representations of $S U_{m} \otimes S U_{n}$, whose $S U_{m}$ and $S U_{n}$ parts have plurality types p_{m} and p_{n} equal to $p_{m n}$ modulo m and modulo n, respectively. A practical method of obtaining reductions is described and a tabulation of results in the case of $S U_{6}$ and $S U_{2} \otimes S U_{3}$ is made. The method depends on the use of a very concise version of the Weyl character formula for unitary groups which does not seem to have been used elsewhere.

I. INTRODUCTION

MUCH work during the last year has been performed in investigation of the possibility that the octet version ${ }^{1}$ of the $S U_{3}$ theory of particle interactions is only a manifestation of some wider theory described by an approximate symmetry group of which $S U_{3}$ is a subgroup. Such work divides quite clearly into three distinct areas. In one of these areas, the extended symmetry group in question refers only to internal space properties of particles, and the most natural candidates in this case are the groups of rank three. Of these the group $S U_{4}$ seems to be the most popular ${ }^{2}$ though

[^0]various others have also been investigated. ${ }^{3}$ A second area of activity concerns the extension ${ }^{4}$ of the Wigner supermultiplet theory of nuclear structure ${ }^{s}$ into the realm of particle physics. Here the underlying symmetry is that described by the group $S U_{6}$ with an

[^1]$S U_{2} \otimes S U_{3}$ subgroup in which the $S U_{2}$ part refers to ordinary spin and the $S U_{3}$ part refers in the sense of the octet theory to the internal space properties of particles. The third area is associated with the $U_{3} \otimes U_{3}$ group. ${ }^{6}$

In connection with their work on the first of the above-mentioned areas of research, the authors ${ }^{7}$ made a study of certain properties of groups of the type $S U_{n+1}$. In this study the concept of purality type ${ }^{8}$ for representations of $S U_{n+1}$ was introduced together with theorems concerning the reduction of a given representation of $S U_{n+1}$ into representations of its $S U_{n} \otimes U_{1}^{(n)}$ subgroup. Such theorems are important in connection with the classification of particles according to basis states of representations of $S U_{3}$, $S U_{4}$, etc. In addition they allow the occurrence of fractional eigenvalues of the generator $Y_{1}^{(n)}$ of $U_{1}^{(n)}$ (and, hence, of Q / e where Q is the charge operator ${ }^{7,9}$) to be correlated with the plurality type of a given representation of $S U_{n+1}$.

In the present paper we study certain properties of special unitary groups relevant to the second category of theories referred to in the first paragraph. Most of the results of this study concern the reduction of representations of $S U_{m n}$ into representations of its subgroup $S U_{m} \otimes S U_{n}$. To be more specific, we must introduce some notation. The irreducible representations (IRs) of $S U_{r}$ can be put in one to one correspondence with Young diagrams of no more than ($r-1$) rows and, hence, characterized by the notation ${ }^{10}$

$$
\begin{equation*}
\left\{l_{1}, l_{2}, \cdots l_{r-1}\right\} \tag{1.1}
\end{equation*}
$$

where l_{i} gives the number of boxes in the i th row of the associated Young diagram and satisfies

[^2]\[

$$
\begin{equation*}
l_{1} \geq l_{2} \geq \cdots \geq l_{r-1} \geq 0 \tag{1.2}
\end{equation*}
$$

\]

The plurality type of the $\operatorname{IR}\left\{l_{1}, l_{2}, \cdots l_{r-1}\right\}$ is defined ${ }^{7}$ according to

$$
\begin{equation*}
p\left\{l_{1}, l_{2}, \cdots l_{r-1}\right\}=\sum_{i=1}^{+-1} l_{i}(\text { modulo } r) \tag{1.3}
\end{equation*}
$$

Its basic property ${ }^{7}$ is contained in the observation that an IR of $S U_{r}$ which occurs in the direct product of a given pair of IRs has plurality type equal, modulo r, to the sum of the plurality types of the given pair of IRs. Our discussion begins with a proof (in Sec. II) of the following

Theorem. The reduction of an IR of $S U_{m n}$ with plurality type $p_{m n}$ into IRs of its $S U_{m} \otimes S U_{n}$ subgroup yields only IRs in which
(a) the $S U_{m}$ part has plurality type p_{m} given by $p_{m}=p_{m n}($ modulo $m)$;
(b) the $S U_{n}$ part has plurality type p_{n} given by $p_{n}=p_{m n}(\operatorname{modulo} n)$.
Well known results ${ }^{4}$ for $S U_{6}$ illustrate this theorem. For example, the 56 -dimensional IR $\{3,0,0,0,0\}$ (or $\{3\}$ simply) of $S U_{6}$ has "hexality" 3 and, hence, by the theorem should contain only IRs of $S U_{2} \otimes S U_{3}$ with (duality, triality) $=(1,0)$. In fact it contains a spin- $-\frac{3}{2}$ decuplet and a spin- $\frac{1}{2}$ octet, both of which have the required duality-triality values. The theorem may also be used to make statements of the following type:
(a) a theory with symmetry group $S U_{6} / Z_{6}$, i.e., a theory generated by the regular representation $\{2,1,1,1,1\}$ of 35 dimensions of $S U_{6}$ describes only unquarklike bosons;
(b) a theory with symmetry group $S U_{6} / Z_{3}$, i.e., a theory generated by the fundamental IR $\{1,1,1,0,0\}$ (or simply $\left\{1^{3}\right\}$) of $S U_{6}$, describes only unquarklike bosons and fermions;
(c) a theory with symmetry group $S U_{6} / Z_{2}$, i.e., a theory generated by the complex conjugate pair of fundamental IRs $\left\{1^{2}\right\}$ and $\left\{1^{4}\right\}$ of $S U_{6}$, describes only bosons both quarklike and unquarklike;
(d) a theory with symmetry group $S U_{\mathrm{B}}$ itself, i.e., a theory generated by all five fundamental IRs $\left\{1^{r}\right\}(1 \leq r \leq 5)$, describes quarklike and unquarklike bosons and fermions.

The term unquarklike is used here to designate particles associated with the IRs of $S U_{3}$ which occur in the octet theory, i.e., the theory whose symmetry group is $S U_{3} / Z_{3}$, the term quark having been introduced ${ }^{11}$ to describe the particles associated with the fundamental IR $\{1\}$ of $S U_{3}$.

[^3]The statements (a) to (d) follow from the theorem in a straightforward way. Consider (b), for example. Since only the IRs $\left\{1^{2}\right\}$ and $\left\{1^{4}\right\}$ of $S U_{6}$ with even hexality are used to generate the IRs of the theory based on $S U_{6} / Z_{2}$, it follows from the basic property of plurality type quoted above that the theory involves only IRs of even hexality. The theorem then implies that IRs of $S U_{2} \otimes S U_{3}$ which are contained in such IRs have duality zero and thus correspond only to bosons. However, since hexalities 0, 2, 4 are allowed, all values of triality type can occur for the $S U_{3}$ parts of the IRs of $S U_{2} \otimes S U_{3}$.

Statement (b) is of some importance, since it implies that the extensions of supermultiplet theory to particle physics can be made whether quarks are discovered or not. Of course, such a statement is already implicit in the literature. ${ }^{5}$

The theorem proved in Sec. II is concerned with the reduction of an IR of $S U_{m n}$ into IRs of $S U_{m} \otimes$ $S U_{n}$. This leads us naturally to consider the development of a rapid and economical method of obtaining such reductions. The basic idea is to express the character of a given IR of $S U_{m n}$ corresponding to an element of the $S U_{m} \otimes S U_{n}$ subgroup as a sum of characters of IRs of the product subgroup. In order to make the application of this fundamental idea a practical matter, we employ, not the Weyl character formula ${ }^{12}$ itself, but certain equivalent more concise forms of it obtained by algebraic manipulation. Discussion of this character formula is given in Sec. III. In Sec. IV, technical details are given for the use of these formulas to derive the desired results. General results have not been obtained, but rather a method to use in any particular example. Accordingly, the technique is explained in terms of the supermultiplet theory, as the simplest example available, as well as its particlephysics counterpart. In the former instance, results are well known ${ }^{13}$ for a wide range of low-dimensional IRs of $S U_{4}$, and hence, we have not repeated them. For the case of $S U_{6}$, we have appended a table of the low-dimensional IRs, their dimensionalities and hexalities, their $S U_{2} \otimes S U_{3}$ content and the duality-triality of this content.

II. PROOF OF THE REDUCTION THEOREM

We prove here the following
Theorem. The reduction of an IR of $S U_{m n}$ of

[^4]plurality $p_{m n}$ into IRs of $S U_{m} \otimes S U_{n}$ yields only IRs whose $S U_{m}$ and $S U_{n}$ parts have pluralities p_{m} and p_{n} equal to $p_{m n}$, modulo m and modulo n, respectively.

The method of proof is to establish the theorem for each of the fundamental IRs of $S U_{m n}$. Then, from the basic property of plurality type, we see that the theorem holds for any direct product of a finite number of fundamental IRs. Since any IR of $S U_{m n}$ occurs within some direct product of fundamental IRs, ${ }^{14}$ the theorem then follows for any IR of $S U_{m n}$. We must therefore consider the ($m n-1$) fundamental IRs $\left\{1^{\nu}\right\}, 1 \leq p \leq(m n-1)$ of $S U_{m n}$. Of these $\{1\}$ is the self representation and the others correspond to the transformations induced by this on the antisymmetric tensors of $\operatorname{rank} 2,3, \cdots$, ($m n-1$).

Consider first the self representation. Let $\varphi_{a}(1 \leq a \leq m), \psi_{b}(1 \leq b \leq n)$ be bases for the self-representations $\{1\}$ of $S U_{m}$ and $S U_{n}$, respectively. If we consider the most general unitary unimodular transformations of the $m n$ product functions $\varphi_{a} \psi_{b}$, we clearly have the self-representation of $S U_{m n}$, i.e., the $\operatorname{IR}\{1\}$ of $S U_{m n}$ becomes the IR $\{1\} \otimes\{1\}$ of $S U_{m} \otimes S U_{n}$ on restriction from $S U_{m n}$ to $S U_{m} \otimes S U_{n}$.

Next we note that for $1 \leq p \leq m n-2$, the product representation $\left\{1^{p}\right\} \otimes\{1\}$ of $S U_{m n}$ contains within it the $\operatorname{IR}\left\{1^{p+1}\right\}$ of $S U_{m n}$. This is a simple consequence of the Littlewood method ${ }^{15}$ for the reduction of direct products of IRs of special unitary groups. Let us then assume the theorem true for all $\left\{1^{p}\right\}$ with $p \leq p_{0}$ for some fixed p_{0} in the range $1 \leq p_{0} \leq m n-2$. Then, using a basic property of plurality type we see that it is true for the product representation $\left\{1^{p_{0}}\right\} \otimes\{1\}$ and, hence, for $\left\{1^{p_{0}+1}\right\}$. Since we have proved the theorem for the $\operatorname{IR}\{1\}$, it follows by induction that it is true for all the fundamental IRs of $S U_{m n}$ and, hence, for all IRs of $S U_{m n}$.

III. ON THE FORMULA FOR THE CHARACTER OF AN IRREDUCIBLE REPRESENTATION OF $S U_{n}$

Our starting point is the well-known Weyl formula 12 for the character of an $\operatorname{IR}\left\{l_{1}, l_{2}, \cdots l_{n-1}\right\}$ of SU_{n} corresponding to an element of $S U_{n}$ with eigenvalues $\epsilon_{i}(i \leq i \leq n)$ which satisfy $\left|\epsilon_{i}\right|=1$ and

[^5]$\epsilon_{1} \epsilon_{2} \cdots \epsilon_{n}=1$. The formula in question is
\[

$$
\begin{aligned}
& \chi\left(\left\{l_{1}, l_{2}, \cdots l_{n-1}\right\}, \epsilon_{1}, \epsilon_{2}, \cdots, \epsilon_{n}\right) \\
& \left.=\left\lvert\, \begin{array}{lllll}
\epsilon_{1}^{l_{1}+n-1} & \epsilon_{1}^{l_{1}+n-2} & \cdots & \epsilon_{1}^{l_{n-1}+1} & 1 \\
l_{2}^{l_{2}+n-1} & \epsilon_{2}^{l_{2}+n-2} & \cdots & \epsilon_{2}^{l_{n-1}+1} & 1 \\
\vdots & \vdots & & \vdots & \vdots \\
\vdots \epsilon_{n}^{+n} & \vdots & \epsilon_{n}^{l_{3}+n-1} & \cdots & \epsilon_{n}^{l_{n-1}+1}
\end{array}\right.\right] .
\end{aligned}
$$
\]

It is to be observed that the character χ "belongs to" the symmetric group S_{n} on the n symbols ϵ_{i} in the sense that it is invariant under any permutation of them. We shall be able to cast Eq. (3.1) into a form better suited to the work of the next section by introducing certain basic functions which belong to S_{n} and writing x in terms of them. The basic functions to which we refer are the so-called ${ }^{16}$ elementary symmetric functions and homogeneous product functions. The elementary symmetric functions of the n symbols ϵ_{i} are

$$
\begin{align*}
& a_{1}=\sum_{i} \epsilon_{i}, \\
& a_{2}=\sum_{i<i} \epsilon_{i} \epsilon_{i}, \tag{3.2}\\
& a_{3}=\sum_{i<i<k} \epsilon_{i} \epsilon_{j} \epsilon_{k}, \cdots, \\
& a_{n}=\epsilon_{1} \epsilon_{2} \epsilon_{3} \cdots \epsilon_{n}=1,
\end{align*}
$$

and the homogeneous product sums are

$$
\begin{align*}
& h_{1}=\sum \epsilon_{i}=a_{1}, \\
& h_{2}=\sum_{i \leq i}^{i} \epsilon_{i} \epsilon_{i}, \tag{3.3}\\
& h_{3}=\sum_{i \leq i \leq k} \epsilon_{i} \epsilon_{i} \epsilon_{k}, \cdots .
\end{align*}
$$

There are only n elementary symmetric functions a_{r}, i.e., $a_{r}=0, r>n$. Also, $a_{0}=1$ and $a_{r}=0, r<0$. For the homogeneous product sums, we also write $h_{0}=1$ and $h_{r}=0, r<0$, with the difference that h_{r} can be defined for any $r>0$ by Eq. (3.3). However, the h, for $r>n$ are not algebraically independent of the h_{r} for $r \leq n$ and are, furthermore, related to the a_{r} through the equations

[^6]\[

$$
\begin{align*}
& h_{1}=a_{1}, \\
& h_{2}=h_{1} a_{1}-a_{1}=a_{1}^{2}-a_{2}, \tag{3.4}\\
& h_{3}=h_{2} a_{1}-h_{1} a_{2}+a_{3}=a_{1}^{3}-2 a_{1} a_{2}+a_{3} \cdots, \\
& h_{r}=h_{r-1} a_{1}-h_{r-2} a_{2}+\cdots-(-1)^{r} h_{0} a_{r} .
\end{align*}
$$
\]

From Eq. (3.4) we can readily derive

$$
h_{r}=\left|\begin{array}{ccccc}
a_{1} & a_{2} & \cdots & a_{r-1} & a_{r} \tag{3.5}\\
1 & a_{1} & \cdots & a_{r-2} & a_{r-1} \\
0 & 1 & \cdots & & \\
\vdots & \vdots & & & \\
0 & 0 & \cdots & 1 & a_{1}
\end{array}\right|
$$

$$
=\sum(-1)^{\alpha_{2}+\alpha_{4}+\cdots} \frac{\left(\alpha_{1}+\alpha_{2}+\cdots \alpha_{n}\right)!}{\alpha_{1}!\alpha_{2}!\cdots \alpha_{n}!} a_{1}^{\alpha_{1}} a_{2}^{\alpha_{2}} \cdots a_{n}^{\alpha_{n}}
$$

in which the summation is over all nonnegative α_{k} satisfying $\sum_{k} k \alpha_{k}=r$, a restriction which ensures that each term of the sum be of degree r in the ϵ_{i}. Equations (3.4) can, of course, equally well be solved for the a_{r} in terms of the h_{r}. We then find

$$
a_{r}=\left|\begin{array}{lllll}
h_{1} & h_{2} & \cdots & h_{r-1} & h_{r} \tag{3.6}\\
1 & h_{1} & \cdots & h_{r-2} & h_{r-1} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \cdots & 1 & h_{1}
\end{array}\right|,
$$

which is of the same structure as Eq. (3.5). Since $a_{r}=0$ for $r>n$, Eq. (3.6) shows how h_{n+1}, h_{n+2}, \cdots may successively be expressed in terms of the $h_{r}(r \leq n)$.

It can be proved ${ }^{16}$ that the a_{r} and the h, with $r \leq n$ provide an algebraic basis for all functions of finite degree in the ϵ_{i} belonging to S_{n}. Since χ as given by Eq. (3.1) belongs to S_{n} and is of finite degree $\left(l_{1}+l_{2}+\cdots+l_{n-1}\right)$ in the ϵ_{i}, this remark should be applicable to it. Indeed χ as given by Eq. (3.1) is exactly the quantity discussed by Littlewood ${ }^{16}$ under the na,e "bialternant" and, from his discussion of bialternants, we obtain the result ${ }^{17}$
$\chi\left(\left\{l_{1}, l_{2}, \cdots, l_{n-1}\right\}, \epsilon_{1}, \cdots, \epsilon_{n}\right)$

$$
=\left|\begin{array}{llll}
h_{l_{1}} & h_{l_{1}+1} & \cdots & h_{l_{1}+n-2} \tag{3.7}\\
h_{l_{n-1}} & h_{l_{s}} & \cdots & h_{l_{2}+n-3} \\
\vdots & & & \\
\vdots h_{l_{n-1}-n+2} & & \cdots & h_{l_{n-1}}
\end{array}\right| .
$$

[^7]This formula is the one on which our ensuing discussion is principally based. Despite the availability of a formula relating the right sides of Eqs. (3.1) and (3.7) in the work of Littlewood, the result (3.7) does not seem to have been used in previous discussions on the representation theory of unitary groups. Eq. (3.7) is quite distinct from, but presumably equivalent to, the form into which Aghassi and Roman ${ }^{18}$ have manipulated the Weyl formula (3.1).

In the case of the IR $\{l, 0, \cdots, 0\}$ or $\{l\}$ simply of $S U_{n}$, Eq. (3.7) reduces to

$$
\begin{equation*}
\chi\left(\{l\}, \epsilon_{1}, \epsilon_{2}, \cdots \epsilon_{n}\right)=h_{l} \tag{3.8}
\end{equation*}
$$

since $h_{0}=1$ and $h_{r}=0$ for $r<0$. Hence, Eq. (3.7) expresses the character of the general IR of $S U_{n}$ as a function of the characters of IRs of $S U_{n}$ which correspond to Young diagrams of one row or to totally symmetric tensors. This statement is to be contrasted with an analogous but more complicated one made by Aghassi and Roman. ${ }^{18}$ In the case of an $\operatorname{IR}\left\{l_{1}, l_{2}, \cdots, l_{r}, 0, \cdots 0\right\} \equiv\left\{l_{1}, \cdots l_{r}\right\}$ of $S U_{n}$, we see that the determinant on the right side of Eq. (3.7) reduces trivially to one of r rows and columns. In the case of IRs of $S U_{n}$ corresponding to a Young diagram of a single column with r rows ($0 \leq r \leq n-1$), we obtain, from Eqs. (3.6) and (3.7), the notable result

$$
\begin{equation*}
\chi\left(\left\{1^{\prime}\right\}, \epsilon_{1}, \cdots \epsilon_{n}\right)=a_{r} \tag{3.9}
\end{equation*}
$$

where we have written $\left\{1^{r}\right\}=\{1, \cdots 1,0, \cdots 0\}$ with r entries equal to unity on the right. Since the $\left\{1^{+}\right\}(1 \leq r \leq n-1)$ are the fundamental IRs of $S U_{n}$, we see that the r th such IR has character a_{r}. Since any function belonging to S_{n}, e.g., $\chi\left(\left\{l_{1}, \cdots\right.\right.$, $\left.l_{n-1}\right\}, \epsilon_{1}, \cdots, \epsilon_{n}$), can be expressed algebraically in terms of the $a_{r}(1 \leq r \leq n-1)$, it follows that the character of any IR can be written as a function of the characters of the fundamental IRs. This may be regarded as an expression of the sense in which such representations are fundamental.

In order to give an explicit formula for χ in terms of the a_{r}, we introduce the Young diagram $\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{p}\right\}$ conjugate to the Young diagram $\left\{l_{1}, l_{2}, \cdots, l_{n-1}\right\}$. The former is obtained from the latter by transposition, i.e., the numbers $\lambda_{1}, \lambda_{2}, \cdots \lambda_{p}$ refer to the number of boxes in the 1st, 2 nd, $\cdots p$ th column of $\left\{l_{1}, l_{2}, \cdots, l_{n-1}\right\}$. We note that p need not be less than $(n-1)$. Again referring to Littlewood, ${ }^{19}$ we obtain the result

[^8]\[

$$
\begin{align*}
& x\left(\left\{l_{1}, l_{2}, \cdots l_{n-1}\right\}, \epsilon_{1}, \cdots \epsilon_{n}\right) \\
& \quad=\left|\begin{array}{llll}
a_{\lambda_{1}} & a_{\lambda_{1}+1} & \cdots & a_{\lambda_{1}+p-1} \\
a_{\lambda_{2}-1} & a_{\lambda_{s}} & \cdots & a_{\lambda_{s}+p-2} \\
\vdots & & & \vdots \\
a_{\lambda_{p}-p+1} & & \cdots & a_{\lambda_{p}}
\end{array}\right| . \tag{3.10}
\end{align*}
$$
\]

Aside from its interest as an explicit statement on the significance of the fundamental IRs of $S U_{n}$, this result is of practical importance for the calculation of characters. For example, in the case of IRs of $S U_{n}$ corresponding to Young diagrams with fewer columns than rows, Eq. (3.10) will involve a determinant of fewer rows and columns than Eq. (3.7). In the particular case of the IR $\{l\}$ of $S U_{n}$, the partition conjugate to $\{l\}$ is $\left\{1^{i}\right\}$, and Eq. (3.10) reduces to Eq. (3.8) by virtue of Eq. (3.5). Since $p>n-1$ is possible, Eq. (3.10) can involve a determinant of more than ($n-1$) rows. The fact that Eq. (3.10) is in this sense more complicated than the form Eq. (3.7) is compensated by the fact that in Eq. (3.10) only a_{r} with $0 \leq r \leq n$ occur, since $a_{r}=0$ for $r>n$. In Eq. (3.7), however, the h_{r} for $r>n$ are nonvanishing (although algebraically dependent on the h_{r} for $0 \leq r \leq n$) and can in fact occur.

IV. REDUCTION OF IRs OF $S U_{m n}$ INTO IRs $\mathbf{O F} \mathbf{S} U_{m} \otimes S U_{n}$

We have proved in Sec. II that an IR of $S U_{m n}$ with plurality $p_{m n}$ contains within it only IRs of $S U_{m} \otimes S U_{n}$ whose $S U_{m}$ part has plurality $p_{m}=$ $p_{m n}(\bmod m)$ and whose $S U_{n}$ part has plurality $p_{n}=p_{m n}(\bmod n)$. In this section we describe practical methods, based on the character formulas of Sec. III, for actually performing the reduction of IRs of $S U_{m n}$ into IRs of $S U_{m} \otimes S U_{n}$. Although general formulas have not been obtained even in the case (Wigner's supermultiplet theory ${ }^{4}$) of $S U_{4}$ and $S U_{2} \otimes S U_{2}$, our procedure is quite rapid and economical. We shall illustrate it with reference to the Wigner supermultiplet theory and to its particle physics extension ${ }^{5}$ where the reduction in question is from $S U_{6}$ to $S U_{3} \otimes S U_{2}$. Of course, application to reductions from $S U_{8}$ to $S U_{3} \otimes S U_{3}{ }^{20} S U_{12}$ to $S U_{3} \otimes S U_{4},{ }^{21}$ etc., can be made along similar lines.
For $S U_{4}$ we have IRs $\left\{l_{1}, l_{2}, l_{3}\right\}$ corresponding to Young diagrams of at most three rows. The fundamental IRs are three in number $\{1\},\{1,1\}$, and

[^9]$\{1,1,1\}$ with characters
\[

$$
\begin{align*}
a_{1} & =\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4}, \tag{4.1}\\
a_{2} & =\epsilon_{1} \epsilon_{2}+\epsilon_{1} \epsilon_{3}+\epsilon_{1} \epsilon_{4}+\epsilon_{2} \epsilon_{3}+\epsilon_{2} \epsilon_{4}+\epsilon_{3} \epsilon_{4} \tag{4.2}\\
& =a_{2}^{*}, \\
a_{3} & =\epsilon_{2} \epsilon_{3} \epsilon_{4}+\epsilon_{1} \epsilon_{3} \epsilon_{4}+\epsilon_{1} \epsilon_{2} \epsilon_{4}+\epsilon_{1} \epsilon_{2} \epsilon_{3} \tag{4.3}\\
& =a_{1}^{*}
\end{align*}
$$
\]

the properties

$$
\begin{equation*}
\left|\epsilon_{i}\right|=1, \quad 1 \leq i \leq 4, \quad a_{4}=\epsilon_{1} \epsilon_{2} \epsilon_{3} \epsilon_{4}=1 \tag{4.4}
\end{equation*}
$$

of the eigenvalues of a unitary 4×4 matrix having been used. Results (4.1) to (4.3) express the fact that $\{1\}$ is equivalent to the complex conjugate of $\{1,1,1\}$, while $\{1,1\}$ is equivalent to its own complex conjugate. In the Wigner supermultiplet theory, the IR \{1\} operates on the four z-component of spin, z-component of isospin states of a particle with total spin and isospin $\frac{1}{2}$, and is thus a selfrepresentation of arbitrary unitary unimodular transformations of these states. Hence, remembering that the IR $\left\{l_{1}, l_{2}\right\}$ of $S U_{2}$ corresponds to a value $J=$ $\frac{1}{2}\left(l_{1}-l_{2}\right)$ of the appropriate total spin, we see that the IR \{1\} of $S U_{4}$, when restricted to its spinisospin $S U_{2} \otimes S U_{2}$ subgroup, yields an IR $\{1\} \otimes\{1\}$ of that subgroup.
To obtain a corresponding result for a general IR of $S U_{4}$, we note that the element of $S U_{4}$ which describes a general transformation of its $S U_{2} \otimes S U_{2}$ subgroup has the diagonal form

$$
\begin{align*}
{\left[\begin{array}{cccc}
\epsilon_{1} & 0 & 0 & 0 \\
0 & \epsilon_{2} & 0 & 0 \\
0 & 0 & \epsilon_{3} & 0 \\
0 & 0 & 0 & \epsilon_{4}
\end{array}\right] } & =\left[\begin{array}{cccc}
\epsilon^{\frac{1}{3}} \eta^{\frac{3}{2}} & 0 & 0 & 0 \\
0 & \epsilon^{\frac{3}{2}} \eta^{-\frac{1}{2}} & 0 & 0 \\
0 & 0 & \epsilon^{-\frac{1}{2}} \eta^{\frac{1}{2}} & 0 \\
0 & 0 & 0 & \epsilon^{-\frac{3}{2} \eta^{-\frac{3}{3}}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\epsilon^{\frac{1}{2}} & 0 \\
0 & \epsilon^{-\frac{1}{2}}
\end{array}\right] \otimes\left[\begin{array}{cc}
\eta^{\frac{3}{2}} & 0 \\
0 & \eta^{-\frac{1}{2}}
\end{array}\right] \tag{4.5}
\end{align*}
$$

with respect to an ordering (spin up, isospin up), (spin up, isospin down), (spin down, isospin up), (spin down, isospin down) of the basis states of the self-representation, The parameters ϵ and η refer, respectively, to the spin and isospin parts of the product transformation. From (4.5) we see easily ${ }^{22}$

[^10]\[

\left($$
\begin{array}{ll}
\epsilon^{\frac{1}{2}} & 0 \\
0 & \varepsilon^{-\frac{1}{2}}
\end{array}
$$\right)
\]

has character [cf. Eq. (3.1)] $\Sigma^{J}{ }_{i-J i \epsilon}$. For $J=\frac{1}{2}$ this sum is simply $\left(\epsilon^{\frac{1}{2}}+\epsilon^{-\frac{1}{4}}\right)$.
that

$$
\begin{equation*}
a_{1}=\left(\epsilon^{\frac{1}{2}}+\epsilon^{-\frac{1}{2}}\right)\left(\eta^{\frac{1}{4}}+\eta^{-\frac{1}{3}}\right), \tag{4.6}
\end{equation*}
$$

so that on restriction from $S U_{4}$ to $S U_{2} \otimes S U_{2}$,

$$
\begin{equation*}
\chi(\{1\})=\mathfrak{a}_{1} \rightarrow \chi_{*}(\{1\}) \chi_{i}(\{1\}), \tag{4.7}
\end{equation*}
$$

where we have suppressed the ϵ, η arguments and the subscripts s and i to refer to the spin and isospin $S U_{2}$ groups. Thus the IR $\{1\}$ of $S U_{4}$ yields an $\operatorname{IR}\{1\} \otimes\{1\}$ of $S U_{2} \otimes S U_{2}$, a decomposition which clearly applies to the representation $\{1,1,1\}$ as well. From (4.5) we also get

$$
\begin{equation*}
a_{2}=\epsilon+1+\epsilon^{-1}+\eta+1+\eta^{-1}, \tag{4.8}
\end{equation*}
$$

so that ${ }^{22}$

$$
\begin{align*}
\chi(\{1,1\})=a_{2} \rightarrow & \chi_{i}(\{2\}) \chi_{i}(\{0\}) \\
& +\chi_{*}(\{0\}) \chi_{i}(\{2\}), \tag{4.9}
\end{align*}
$$

i.e., the $\operatorname{IR}\{1,1\}$ of $S U_{4}$ yields the $\operatorname{IRs}\{2\} \otimes\{0\}$ and $\{0\} \otimes\{2\}$ of $S U_{2} \otimes S U_{2}$.

It now follows that the splitting of the general IR $\left\{l_{1}, l_{2}, l_{3}\right\}$ into IRs of $S U_{2} \otimes S U_{2}$ can be obtained directly from Eq. (3.10) by systematic use of the formula
$\chi_{z_{i, i}}(\{k\}) \chi_{a, i}\left(\left\{k^{\prime}\right\}\right)$

$$
\begin{align*}
=\chi_{s, i}(\{k+ & \left.\left.k^{\prime}\right\}\right)+\chi_{s, i}\left(\left\{k+k^{\prime}-2\right\}\right) \\
& +\cdots+\chi_{s, i}\left(\left\{\left|k-k^{\prime}\right|\right\}\right) \tag{4.10}
\end{align*}
$$

corresponding to the well known Clebsch-Gordan series for SU_{2}. For IRs of SU_{4} with fewer columns than rows, this is the best way to proceed. However, for other IRs of $S U_{4}$. it is much easier to use Eq. (3.7), since it is possible to give a general result for the reduction for an $\mathrm{IR}\{l\}$ of $S U_{4}$ into a sum of IRs of $S U_{2} \otimes S U_{2}$. This leads, of course, to the well known result ${ }^{13}$ that on restriction from $S U_{4}$ to $S U_{2} \otimes S U_{2}$, we get for the IR $\{l\}$ of $S U_{4}$ the reduction

$$
\begin{array}{r}
\{l\} \rightarrow\{l\} \otimes\{l\}+\{l-2\} \otimes\{l-2\} \\
+\{l-4\} \otimes\{l-4\} \cdots \tag{4.11}
\end{array}
$$

terminating with $\{1\} \otimes\{1\}$ for l odd and $\{0\} \otimes\{0\}$ for l even. We could alternatively say that when restriction to $S U_{2} \otimes S U_{2}$ is made, the IR $\{l\}$ of $S U_{4}$ yields once and only once each IR of $S U_{2} \otimes S U_{2}$ which has both of its parts corresponding to the same Young diagram with l boxes and not more than two rows. The statement, of course, reduces to the previous one since the IRs $\{l+e, e\}$ and $\{l\}$ of $S U_{2}$ are equivalent for e integral; however, it resembles more closely the corresponding state-
ment regarding the reduction of a totally symmetric IR^{23} of $S U_{m n}$ with respect to $S U_{m} \otimes S U_{n}$.

To obtain our result we prove the corresponding character relationship, i.e.,

$$
\begin{align*}
h_{l}= & \chi_{\mathrm{E}}(\{l\}) \chi_{i}(\{l\}) \\
& +\chi_{\mathrm{a}}(\{l-2\}) \chi_{i}(\{l-2\})+\cdots \tag{4.12}
\end{align*}
$$

Clearly (4.12) is true for $l=0$ and $l=1$ using $h_{1}=a_{1}$ and Eq. (4.6). If we assume it true for all l up to some fixed l_{0} and on this basis prove it true for $\left(l_{0}+1\right)$, then it follows for all l by induction. If Eq. (4.12) is true for all $l \leq l_{0}$, then

$$
h_{l}-h_{l-2}=\chi_{s}(\{l\}) \chi_{i}(\{l\})
$$

follows for all $l \leq l_{0}$ also. Hence, using the last line of Eq. (3.4), and Eq. (4.11) for $l=l_{0}, l_{0}-1$, $l_{0}-2, l_{0}-3$, we get

$$
\begin{align*}
h_{l_{0}+1}-h_{l_{0}-1} & =a_{1} \chi_{\mathrm{s}}\left(\left\{l_{0}\right\}\right) \chi_{i}\left(\left\{l_{0}\right\}\right) \\
& -a_{2} \chi_{s}\left(\left\{l_{0}-1\right\}\right) \chi_{i}\left(\left\{l_{0}-1\right\}\right) \\
& +a_{3} \chi_{\mathrm{o}}\left(\left\{l_{0}-2\right\}\right) \chi_{i}\left(\left\{l_{0}-2\right\}\right) \\
& -a_{4} \chi_{\mathrm{o}}\left(\left\{l_{0}-3\right\}\right) \chi_{i}\left(\left\{l_{0}-3\right\}\right), \tag{4.14}
\end{align*}
$$

which, upon using Eqs. (4.7), (4.8), (4.3), and (4.4), together with Eq. (4.10), reduces to
$h_{l_{0}+1}-h_{l_{0}-1}=\chi_{s}\left(\left\{l_{0}+1\right\}\right) \chi_{i}\left(\left\{l_{0}+1\right\}\right)$.
By assumption Eq. (4.12) holds for $l \leq l_{0}$, and since we have proved it true on this basis for $l=l_{0}+1$, its validity for all l follows by induction. Now with the aid of Eqs. (4.14) and (4.10), we can directly reduce

$$
\chi\left(\left\{l_{1}, l_{2}, l_{3}\right\}\right)=\left|\begin{array}{lll}
h_{l_{1}} & h_{l_{1}+1} & h_{l_{1}+2} \tag{4.16}\\
h_{l_{2}-1} & h_{l_{2}} & h_{l_{3}+1} \\
h_{l_{\mathrm{a}}-2} & h_{l_{\mathrm{s}}-1} & h_{l_{\mathrm{z}}}
\end{array}\right|
$$

to a sum of products $\chi_{*} \chi_{i}$. We do not in this case reproduce the more specific results already available in the literature ${ }^{13}$ since our primary purpose here has been to illustrate our general approach. It is to be noted that this approach contrasts with previous ones in that it is directly applicable rather than being recursive.

We now go on to the case of $S U_{6}$ and $S U_{2} \otimes S U_{3}$. For $S U_{6}$ we have five fundamental IRs with characters $a_{r}=\left(\left\{1^{\gamma}\right\}\right), 1 \leq r \leq 5$, given explicitly by

$$
\begin{equation*}
a_{1}=a_{5}^{*}=\epsilon_{1}+\epsilon_{2}+\epsilon_{3}+\epsilon_{4}+\epsilon_{5}+\epsilon_{6} \tag{4.17}
\end{equation*}
$$

${ }^{23}$ M. Moshinsky, J. Math. Phys. 4, 1128 (1963). See also T. A. Brody, M. Moshinsky, and I. Renero, Recursion Relations for the Wigner Coefficients of Unitary Groups, preprint (1964).

$$
\begin{align*}
a_{2}=a_{4}^{*}= & \epsilon_{1} \epsilon_{2}+\epsilon_{1} \epsilon_{3}+\epsilon_{1} \epsilon_{4}+\epsilon_{1} \epsilon_{5}+\epsilon_{1} \epsilon_{6} \\
& +\epsilon_{2} \epsilon_{3}+\epsilon_{2} \epsilon_{4}+\epsilon_{2} \epsilon_{5}+\epsilon_{2} \epsilon_{6}+\epsilon_{3} \epsilon_{4} \\
& +\epsilon_{3} \epsilon_{5}+\epsilon_{3} \epsilon_{6}+\epsilon_{4} \epsilon_{5}+\epsilon_{4} \epsilon_{6}+\epsilon_{5} \epsilon_{6}, \tag{4.18}\\
a_{3}=a_{3}^{*}= & \epsilon_{1} \epsilon_{2} \epsilon_{3}+\epsilon_{1} \epsilon_{2} \epsilon_{4}+\cdots \epsilon_{4} \epsilon_{5} \epsilon_{6}, \tag{4.19}
\end{align*}
$$

where we have used $a_{6}=\epsilon_{1} \epsilon_{2} \epsilon_{3} \epsilon_{4} \epsilon_{5} \epsilon_{6}=1$ and $\left|\epsilon_{i}\right|=1,1 \leq i \leq 6$. The self representation $\{1\}$ of $S U_{6}$ operates on the six states of a spin- $\frac{1}{2}$ quark, a quark ${ }^{11}$ being associated with the IR $\{1\}$ of $S U_{3}$ whose three basis states are characterized by $I=\frac{1}{2}$, $I_{z}= \pm \frac{1}{2}, Y=\frac{1}{3}$, and $I=0, Y=-\frac{2}{3}$. In other words when restriction from $S U_{6}$ to $S U_{2} \otimes S U_{3}$ is made, we get the result

$$
\begin{equation*}
\{1\} \rightarrow\{1\} \otimes\{1\} . \tag{4.20}
\end{equation*}
$$

Here, as always in what follows, the first symbol refers to the $S U_{2}$ part of the product IR. Thus to perform the reduction of $S U_{8}$ to $S U_{2} \otimes S U_{3}$, we consider elements of $S U_{6}$ with diagonal form

$$
=\left[\begin{array}{cc}
\epsilon^{\frac{1}{1}} & 0 \\
0 & \epsilon^{-\frac{1}{2}}
\end{array}\right] \otimes\left(\begin{array}{lll}
\eta_{1} & 0 & 0 \\
0 & \eta_{2} & 0 \\
0 & 0 & \eta_{3}
\end{array}\right)
$$

where ϵ refers to the spin- $S U_{2}$ subgroup of $S U_{6}$, and the η_{i} satisfy $\eta_{1} \eta_{2} \eta_{3}=1$ and refer to the $S U_{3}$ subgroup.

From Eqs. (4.17) to (4.19) and (4.21) one easily obtains

$$
\begin{align*}
& a_{1}=\chi_{s}(\{1\}) \chi_{f}(\{1\}), \tag{4.22}\\
& a_{2}=\chi_{s}(\{0\}) \chi_{f}(\{2\})+\chi_{s}(\{2\}) \chi_{f}(\{1,1\}), \tag{4.23}\\
& a_{3}=\chi_{\cdot}(\{1\}) \chi_{f}(\{2,1\})+\chi_{\cdot}(\{3\}) \chi_{f}(\{0\}), \tag{4.24}\\
& a_{4}=\chi_{0}(\{0\}) \chi_{f}(\{2,2\})+\chi_{\cdot}(\{2\}) \chi_{f}(\{1\}), \tag{4.25}\\
& a_{5}=\chi_{s}(\{1\}) \chi_{f}(\{1,1\}), \tag{4.26}
\end{align*}
$$

so that on restriction from $S U_{6}$ to $S U_{2} \otimes S U_{3}$

$$
\begin{equation*}
\{1\} \rightarrow\{1\} \otimes\{1\} \tag{4.27}
\end{equation*}
$$

Table I. Irreducible representations of $S U_{6}$ and their reduction with respect to $S U_{2} \otimes S U_{3}$. For each IR of $S U_{6}$ both the Young diagram and highest weight designations are given. The $S U_{2} \otimes S U_{3}$ content of each IR of $S U_{0}$ is given first in Youngdiagram notation and secondly in a hybrid notation which refers to $S U_{2}$ parts by their total spin values and to $S U_{2}$ parts by highest weight notation.

IR of $S U_{6}$	Dimension	Hexality	$S U_{2} \times S U_{3}$ content	Duality of $S U_{2}$ part	$\begin{aligned} & \text { Triality } \\ & \text { of } \\ & S U_{\mathrm{z}} \text { part } \end{aligned}$
$\begin{aligned} & \{1\} \\ & (1,0,0,0,0) \end{aligned}$	6	1	$\begin{aligned} & \{1\} \otimes\{1\} \\ & \frac{1}{2} \otimes(1,0) \end{aligned}$	1	1
$\begin{aligned} & \{1,1\} \\ & (0,1,0,0,0) \end{aligned}$	15	2	$\begin{aligned} & \{0\} \otimes\{2\}+\{2\} \otimes\{1,1\} \\ & 0 \otimes(2,0)+1 \otimes(0,1) \end{aligned}$	0	2
$\begin{aligned} & \{1,1,1\} \\ & (0,0,1,0,0) \end{aligned}$	20	3	$\begin{aligned} & \{1\} \otimes\{2,1\}+\{3\} \otimes\{0\} \\ & \frac{1}{2} \otimes(1,1)+3 / 2 \otimes(0,0) \end{aligned}$	1	0
$\begin{aligned} & \{1,1,1,1\} \\ & (0,0,0,1,0) \end{aligned}$	15	4	$\begin{aligned} & \{0\} \otimes\{2,2\}+\{2\} \otimes\{1\} \\ & 0 \otimes(0,2)+1 \otimes(1,0) \end{aligned}$	0	1
$\begin{gathered} \{1,1,1,1,1\} \\ (0,0,0,0,1) \end{gathered}$	6	5	$\begin{aligned} & \{1\} \otimes\{1,1\} \\ & \frac{1}{2} \otimes(0,1) \end{aligned}$	1	2
$\begin{aligned} & \{2\} \\ & (2,0,0,0,0) \end{aligned}$	21	2	$\begin{aligned} & \{2\} \otimes\{2\}+\{0\} \otimes\{1,1\} \\ & 1 \otimes(2,0)+0 \otimes(0,1) \end{aligned}$	0	2
$\begin{aligned} & \{2,1,1,1,1\} \\ & (1,0,0,0,1) \end{aligned}$	35	0	$\begin{aligned} & \{2\} \otimes\{2,1\}+\{0\} \otimes\{2,1\}+\{2\} \otimes\{0\} \\ & 1 \otimes(1,1)+0 \otimes(1,1)+1 \otimes(0,0) \end{aligned}$	0	0
$\begin{aligned} & \{3\} \\ & (3,0,0,0,0) \end{aligned}$	56	3	$\begin{aligned} & \{3\} \otimes\{3\}+\{1\} \otimes\{2,1\} \\ & 3 / 2 \otimes(3,0)+\frac{1}{2} \otimes(1,1) \end{aligned}$	1	0
$\{2,1\}$ $(1,1,0,0,0)$	70	3	$\begin{aligned} & \{1\} \otimes\{3\}+\{3\} \otimes\{2,1\} \\ & \{1\} \otimes\{2,1\}+\{1\} \otimes\{0\} \\ & \frac{1}{2} \otimes(3,0)+3 / 2 \otimes(1,1) \\ & \frac{1}{2} \otimes(1,1)+\frac{1}{2} \otimes(0,0) \end{aligned}$	1	0
$\{2,1,1,1\}$ $(1,0,0,1,0)$	84	5	$\begin{aligned} & \{1\} \otimes\{3,2\}+\{1\} \otimes\{1,1\}+\{3\} \\ & \otimes\{2\}+\{1\} \otimes\{2\}+\{3\} \otimes\{1,1\} \\ & \frac{1}{2} \otimes(1,2)+\frac{1}{2} \otimes(0,1)+3 / 2 \otimes(2,0) \\ & +\frac{1}{2} \otimes(2,0)+3 / 2 \otimes(0,1) \end{aligned}$	1	2
$\{2,2\}$ $(0,2,0,0,0)$	105	4	$\begin{aligned} & \{4\} \otimes\{2,2\}+\{2\} \otimes\{1\}+\{2\} \otimes\{3,1\}+\{0\} \otimes\{4\}+ \\ & \{0\} \otimes\{2,2\} \\ & 2 \otimes(0,2)+1 \otimes(1,0)+1 \otimes(2,1)+0 \otimes(4,0)+0 \otimes(0,2) \end{aligned}$	0	1
$\{2,1,1\}$ $(1,0,1,0,0)$	105	4	$\begin{aligned} & \{2\} \otimes\{3,1\}+\{2\} \otimes\{2,2\}+\{2\} \otimes\{1\}+\{0\} \otimes \\ & \{3,1\}+\{0\} \otimes\{1\}+\{4\} \otimes\{1\} \\ & 1 \otimes(2,1)+1 \otimes(0,2)+1 \otimes(1,0) \\ & 0 \otimes(2,1)+0 \otimes(1,0)+2 \otimes(1,0) \end{aligned}$	0	1
$\begin{aligned} & \{4\} \\ & (4,0,0,0,0) \end{aligned}$	126	4	$\begin{aligned} & \{4\} \otimes\{3,1\}+\{2\} \otimes\{4,0\}+\{0\} \otimes\{2,2\} \\ & 2 \otimes(2,1)+1 \otimes(4,0)+0 \otimes(0,2) \end{aligned}$	0	1
$\{2,2,2\}$ $(0,0,2,0,0)$	175	0	$\begin{aligned} & \{2\} \otimes\{4,2\}+\{2\} \otimes\{0\}+\{0\} \otimes\{3\}+\{0\} \otimes\{3,3\}+ \\ & \{6\} \otimes\{0\}+\{4\} \otimes\{2,1\}+\{2\} \otimes\{2,1\} \\ & 1 \otimes(2,2)+1 \otimes(0,0)+0 \otimes(3,0)+0 \otimes(0,3)+ \\ & 3 \otimes(0,0)+2 \otimes(1,1)+1 \otimes(1,1) \end{aligned}$	0	0
$\{2,2,1,1\}$ $(0,1,0,1,0)$	189	0	$\begin{aligned} & \{0\} \otimes\{4,2\}+\{0\} \otimes\{2,1\}+\{0\} \otimes\{0\}+\{2\} \otimes \\ & \{2,1\}+\{2\} \otimes\{3\}+\{2\} \otimes\{2,1\}+\{2\} \otimes\{3,3\}+ \\ & \{4\} \otimes\{2,1\}+\{4\} \otimes\{0\} \\ & 0 \otimes(2,2)+0 \otimes(1,1)+0 \otimes(0,0)+1 \otimes(1,1)+1 \otimes \\ & (3,0)+1 \otimes(1,1)+1 \otimes(0,3)+2 \otimes(1,1)+2 \otimes(0,0) \end{aligned}$	0	0
$\{3,1\}$ $(2,1,0,0,0)$	210	4	$\begin{aligned} & \{4\} \otimes\{4\}+\{2\} \otimes\{3,1\}+\{2\} \otimes\{2,2\}+\{2\} \otimes\{3,1\}+ \\ & \{2\} \otimes\{1\}+\{0\} \otimes\{3,1\}+\{0\} \otimes\{1\} \\ & 2 \otimes(4,0)+1 \otimes(2,1)+1 \otimes(0,2)+1 \otimes(2,1)+1 \otimes \\ & (1,0)+0 \otimes(2,1)+0 \otimes(1,0) \end{aligned}$	0	1
$\{2,2,1\}$ $(0,1,1,0,0)$	210	5	$\begin{aligned} & \{5\} \otimes\{1,1\}+\{3\} \otimes\{1,1\}+\{3\} \otimes\{2\}+\{3\} \otimes \\ & \{3,2\}+\{1\} \otimes\{3,2\}+\{1\} \otimes\{2\}+\{1\} \otimes\{1,1\}+ \\ & \{1\} \otimes\{4,1\}+ \\ & 5 / 2 \otimes(0,1)+3 / 2 \otimes(0,1)+3 / 2 \otimes(2,0)+3 / 2 \otimes \\ & (1,2)+\frac{1}{2} \otimes(1,2)+\frac{1}{2} \otimes(2,0)+\frac{1}{2} \otimes(0,1)+\frac{1}{2} \otimes(3,1) \end{aligned}$	1	2

Table I. (Continued).

\begin{tabular}{|c|c|c|c|c|c|}
\hline IR of $S U_{6}$ \& Dimension \& Hexality \& $S U_{2} \times S U_{3}$ content \& $$
\begin{aligned}
& \text { Duality } \\
& \text { of } \\
& S U_{2} \text { part }
\end{aligned}
$$ \& Triality of $S U_{3}$ part

\hline $$
\begin{aligned}
& \{5\} \\
& (5,0,0,0,0)
\end{aligned}
$$ \& 252 \& 5 \& $$
\begin{aligned}
& \{5\} \otimes\{5\}+\{3\} \otimes\{4,1\}+\{1\} \otimes\{3,2\} \\
& \frac{8}{2} \otimes(5,0)+\frac{3}{2} \otimes(3,1)+\frac{1}{2} \otimes(1,2)
\end{aligned}
$$ \& 1 \& 2

\hline $\{3,1,1,1\}$
$(2,0,0,1,0)$ \& 280 \& $$
0
$$ \& $$
\begin{aligned}
& \{4\} \otimes\{2,1\}+\{0\} \otimes\{2,1\}+\{4\} \otimes\{3,3\}+\{2\} \otimes \\
& \{3,3\}+\{0\} \otimes\{3,3\}+\{0\} \otimes\{3\}+\{2\} \otimes\{2,1\}+ \\
& \{2\} \otimes\{4,2\}+\{2\} \otimes\{2,1\}+\{2\} \otimes\{0\} \\
& 2 \otimes(1,1)+0 \otimes(1,1)+2 \otimes(0,3)+1 \otimes(3,0)+0 \otimes \\
& (0,3)+0 \otimes(3,0)+1 \otimes(1,1)+1 \otimes(2,2)+1 \otimes \\
& (1,1)+1 \otimes(0,0)
\end{aligned}
$$ \& 0 \& 0

\hline $\{4,2,2,2,2\}$
$(2,0,0,0,2)$ \& 405 \& $$
0
$$ \& $$
\begin{aligned}
& \{4\} \otimes\{4,2\}+\{2\} \otimes\{4,2\}+\{0\} \otimes\{4,2\}+\{2\} \otimes \\
& \{3\}+\{2\} \otimes\{3,3\}+\{4\} \otimes\{2,1\}+\{2\} \otimes\{2,1\}+\{2\} \otimes \\
& \{2,1\}+\{0\} \otimes\{2,1\}+\{4\} \otimes\{0\}+\{0\} \otimes\{0\} \\
& 2 \otimes(2,2)+1 \otimes(2,2)+0 \otimes(2,2)+1 \otimes(3,0)+ \\
& 1 \otimes(0,3)+2 \otimes(1,1)+1 \otimes(1,1)+1 \otimes(1,1)+ \\
& 0 \otimes(1,1)+2 \otimes(0,0)+0 \otimes(0,0)
\end{aligned}
$$ \& 0 \& 0

\hline $$
\begin{aligned}
& \{6\} \\
& (6,0,0,0,0)
\end{aligned}
$$ \& 462 \& 0 \& $$
\begin{aligned}
& \{6\} \otimes\{6\}+\{4\} \otimes\{5,1\}+\{2\} \otimes\{4,2\}+\{0\} \otimes\{3,3\} \\
& 3 \otimes(6,0)+2 \otimes(4,1)+1 \otimes(2,2)+0 \otimes(0,3)
\end{aligned}
$$ \& 0 \& 0

\hline $\{3,3\}$
$(0,3,0,0,0)$ \& 490 \& 0 \& $$
\begin{aligned}
& \{0\} \otimes\{6\}+\{0\} \otimes\{4,2\}+\{0\} \otimes\{0\}+\{2\} \otimes\{5,1\}+ \\
& \{2\} \otimes\{2,1\}+\{2\} \otimes\{3,0\}+\{2\} \otimes\{3,3\}+\{4\} \otimes \\
& \{4,2\}+\{4\} \otimes\{2,1\}+\{6\} \otimes\{3,3\} \\
& 0 \otimes(6,0)+0 \otimes(2,2)+0 \otimes(0,0)+1 \otimes(4,1)+1 \otimes \\
& (1,1)+1 \otimes(3,0)+1 \otimes(0,3)+2 \otimes(2,2)+2 \otimes \\
& (1,1)+3 \otimes(0,3)
\end{aligned}
$$ \& 0 \& 0

\hline $\{3,2,2,1,1\}$
$(1,0,1,0,1)$ \& 540 \& 3 \& $$
\begin{aligned}
& \{3\} \otimes\{4,2\}+\{1\} \otimes\{4,2\}+\{1\} \otimes\{4,2\}+\{3\} \otimes\{3\}+ \\
& \{1\} \otimes\{3\}+\{3\} \otimes\{3,3\}+\{1\} \otimes\{3,3\}+\{5\} \otimes \\
& \{2,1\}+\{3\} \otimes\{2,1\}+\{3\} \otimes\{2,1\}+\{3\} \otimes\{2,1\}+ \\
& \{1\} \otimes\{2,1\}+\{1\} \otimes\{2,1\}+\{1\} \otimes\{2,1\}+\{5\} \otimes \\
& \{0\}+\{3\} \otimes\{0\}+\{1\} \otimes\{0\}(2)+ \\
& \frac{3}{2} \otimes(2,2)+\frac{1}{2} \otimes(2,2)+\frac{1}{2} \otimes(2,2)+\frac{3}{2} \otimes(3,0)+ \\
& \frac{1}{2} \otimes(3,0)+\frac{3}{2} \otimes(0,3)+\frac{1}{2} \otimes(0,3)+\frac{5}{2} \otimes(1,1)+\frac{3}{2} \otimes \\
& (1,1)+\frac{3}{2} \otimes(1,1)+\frac{3}{2} \otimes(1,1)+\frac{1}{2} \otimes(1,1)+\frac{1}{2} \otimes(1,1)+ \\
& (1,1)+\frac{s}{2} \otimes(0,0)+\frac{3}{2} \otimes(0,0)+\frac{1}{2} \otimes(0,0)
\end{aligned}
$$ \& 1
$$
\frac{1}{2} \otimes
$$ \& 0

\hline $\{3,2,2,2\}$
$(1,0,0,2,0)$ \& 560 \& 3 \& $$
\begin{aligned}
& \{1\} \otimes\{5,4\}+\{3\} \otimes\{4,2\}+\{1\} \otimes\{4,2\}+\{3\} \otimes \\
& \{3,3\}+\{1\} \otimes\{3,3\}+\{5\} \otimes\{2,1\}+\{3\} \otimes\{2,1\}+ \\
& \{3\} \otimes\{2,1\}+\{1\} \otimes\{2,1\}+\{1\} \otimes\{2,1\}+\{5\} \otimes \\
& \{3\}+\{3\} \otimes\{3\}+\{1\} \otimes\{3\}+\{3\} \otimes\{0\} \\
& \frac{1}{2} \otimes(1,4)+\frac{3}{2} \otimes(2,2)+\frac{1}{2} \otimes(2,2)+\frac{3}{2} \otimes(0,3)+ \\
& \frac{1}{2} \otimes(0,3)+\frac{5}{2} \otimes(1,1)+\frac{3}{2} \otimes(1,1)+\frac{3}{2} \otimes(1,1)+ \\
& \frac{1}{2} \otimes(1,1)+\frac{1}{2} \otimes(1,1)+\frac{5}{2} \otimes(3,0)+\frac{3}{2} \otimes(3,0)+\frac{1}{2} \otimes \\
& (3,0)+\frac{3}{2} \otimes(0,0)
\end{aligned}
$$ \& 1 \& 0

\hline $\{5,1,1,1,1\}$
$(4,0,0,0,1)$ \& 700 \& 3 \& $$
\begin{aligned}
& \{5\} \otimes\{5,1\}+\{3\} \otimes\{5,1\}+\{3\} \otimes\{4,2\}+\{1\} \otimes \\
& \{4,2\}+\{3\} \otimes\{3\}+\{1\} \otimes\{3\}+\{1\} \otimes\{3,3\}+\{5\} \otimes \\
& \{3\}+\{3\} \otimes\{2,1\}+\{1\} \otimes\{2,1\} \\
& 5 / 2 \otimes(4,1)+3 / 2 \otimes(4,1)+3 / 2 \otimes(2,2)+\frac{1}{2} \otimes \\
& (2,2)+3 / 2 \otimes(3,0)+\frac{1}{2} \otimes(3,0)+\frac{1}{2} \otimes(0,3)+ \\
& 5 / 2 \otimes(3,0)+3 / 2 \otimes(1,1)+\frac{1}{2} \otimes(1,1)
\end{aligned}
$$ \& 1 \& 0

\hline $\{3,3,3\}$

$(0,0,3,0,0)$ \& 980 \& 3 \& $$
\begin{aligned}
& \{3\} \otimes\{6,3\}+\{1\} \otimes\{5,1\}+\{1\} \otimes\{5,4\}+\{5\} \otimes \\
& \{4,2\}+\{3\} \otimes\{4,2\}+\{1\} \otimes\{4,2\}+\{3\} \otimes\{3\}+ \\
& \{3\} \otimes\{3,3\}+\{7\} \otimes\{2,1\}+\{5\} \otimes\{2,1\}+\{3\} \otimes \\
& \{2,1\}+\{1\} \otimes\{2,1\}+\{9\} \otimes\{0\}+\{5\} \otimes\{0\}+\{3\} \otimes\{0\} \\
& \frac{3}{2} \otimes(3,3)+\frac{1}{2} \otimes(4,1)+\frac{1}{2} \otimes(1,4)+\frac{s}{2} \otimes(2,2)+ \\
& \frac{3}{2} \otimes(2,2)+\frac{1}{2} \otimes(2,2)+\frac{3}{2} \otimes(3,0)+\frac{3}{2} \otimes(0,3)+ \\
& \frac{7}{2} \otimes(1,1)+\frac{5}{2} \otimes(1,1)+\frac{3}{2} \otimes(1,1)+\frac{1}{2} \otimes(1,1)+ \\
& \frac{9}{2} \otimes(0,0)+\frac{3}{2} \otimes(0,0)+\frac{3}{2} \otimes(0,0)
\end{aligned}
$$ \& 1 \& 0

\hline $(5,1)$ \& 1050 \& 0 \& $$
\begin{aligned}
& \{4\} \otimes\{6\}+\{6\} \otimes\{5,1\}+\{4\} \otimes\{5,1\}+\{2\} \otimes \\
& \{5,1\}+\{4\} \otimes\{4,2\}+\{2\} \otimes\{4,2\}+\{0\} \otimes\{4,2\}+ \\
& \{2\} \otimes\{3,3\}+\{4\} \otimes\{3\}+\{2\} \otimes\{3\}+\{2\} \otimes \\
& \{2,1\}+\{0\} \otimes\{2,1\}
\end{aligned}
$$ \& 0 \& 0

\hline
\end{tabular}

Table I. (Continued).

$$
\begin{align*}
& \left\{1^{2}\right\} \rightarrow\{0\} \otimes\{2\}+\{2\} \otimes\left\{1^{2}\right\} \tag{4.28}\\
& \left\{1^{3}\right\} \rightarrow\{1\} \otimes\{2,1\}+\{3\} \otimes\{0\} \tag{4.29}\\
& \left\{1^{4}\right\} \rightarrow\{0\} \otimes\left\{2^{2}\right\}+\{2\} \otimes\{1\} \tag{4.30}\\
& \left\{1^{5}\right\} \rightarrow\{1\} \otimes\left\{1^{2}\right\} \tag{4.31}
\end{align*}
$$

It now follows on using Eqs. (4.22) to (4.26), Eq. (4.10), and the known ${ }^{24}$ Clebsch-Gordan series for $S U_{3}$, that we can directly obtain from Eq. (3.10) the reduction of any IR of $S U_{8}$ with respect to $S U_{2} \otimes S U_{3}$. In the present case it is important in terms of algebraic effort to use Eq. (3.10) when the IR of $S U_{6}$ in question has fewer columns than rows and otherwise to use Eq. (3.7). Again the advantage of using Eq. (3.7) stems from the fact that, on restriction from $S U_{6}$ to $S U_{2} \otimes S U_{3}$, we get

$$
\begin{align*}
h_{l}= & \chi_{s}(\{l\}) \chi_{f}(\{l\})+\chi_{s}(\{l-2\}) \chi_{f}(\{l-1,1\}) \\
& +\chi_{0}(\{l-4\}) \chi_{f}(\{l-2,2\})+\cdots, \tag{4.32}
\end{align*}
$$

the last term being $\chi_{s}(\{1\}) \chi_{f}\left(\left\{\frac{1}{2} l, \frac{1}{2} l\right\}\right)$ for l even and $\chi_{s}(\{1\}) \chi_{f}\left(\left\{\frac{1}{2}(l+1), \frac{1}{2}(l-1)\right\}\right)$ for l odd. This corresponds to saying that when restriction to $S U_{2} \otimes S U_{3}$ is made, the IR $\{l\}$ of $S U_{6}$ yields once and only once each IR of $S U_{2} \otimes S U_{3}$ which has both of its parts corresponding to the same Young diagram with l boxes and not more than two rows. The proof proceeds along the same lines as for $S U_{4}$.

To illustrate the ready applicability of the present methods we consider the IRs of $S U_{6}$ of 56,35 , and 70 dimensions which have been employed in the currently popular $S U_{6}$ theory. The IR with 56 dimensions is $\{3\}$, and from (4.32)

$$
\begin{gathered}
\{3\} \rightarrow\{3\} \otimes\{3\}+\{1\} \otimes\{2,1\} \\
" 56 " \rightarrow \text { "spin-3 }{ }^{2} \text { decuplet" }+ \text { "spin- } \frac{1}{2} \text { octet." }
\end{gathered}
$$

The IR with 35 dimensions is the regular representation $\{2,1,1,1,1\}$. The shape conjugate to $\{2,1,1,1,1\}$ is $\{5,1\}$. Hence, using Eq. (3.10), and then Eqs. (4.22) and (4.26), we get
$\chi(\{2,1,1,1,1\})=\left|\begin{array}{ll}a_{5} & a_{6} \\ 1 & a_{1}\end{array}\right|$

[^11]\[

$$
\begin{align*}
=x_{*}(\{1\}) x_{f}(\{1, & 1\}) x_{*}(\{1\}) \chi_{f}(\{1\}) \\
& -\chi_{s}(\{0\}) x_{f}(\{0\}) . \tag{4.35}
\end{align*}
$$
\]

Now using the Clebsch-Gordan series for $S U_{2}$ and $S U_{3}$ the result

$$
\begin{align*}
& \{2,1,1,1,1\} \rightarrow\{2\} \otimes\{2,1\} \\
& +\{2\} \otimes\{0\}+\{0\} \otimes\{2,1\} \tag{4.36}
\end{align*}
$$

" 35 " \rightarrow "spin-1 octet" + "spin-1 singlet"

$$
+ \text { "spin-0 octet" }
$$

follows easily. Finally, the IR of $S U_{6}$ with 70 dimensions is the $\operatorname{IR}\{2,1\}$. Using Eq. (3.7) and then Eq. (4.32), we get

$$
\begin{align*}
& \chi(\{2,1\})=\left|\begin{array}{cc}
h_{2} & h_{3} \\
1 & h_{1}
\end{array}\right| \\
& =x_{s}(\{2\}) x_{f}(\{2\}) \chi_{s}(\{1\}) x_{f}(\{1\}) \\
& \quad+\chi_{*}(\{0\}) x_{f}(\{1,1\}) x_{s}(\{1\}) x_{f}(\{1\}) \\
& \tag{4.37}\\
& \quad-\chi_{s}(\{3\}) x_{f}(\{3\})-\chi_{s}(\{1\}) x_{f}(\{2,1\})
\end{align*}
$$

and hence,

$$
\begin{align*}
\{2,1\} \rightarrow & \{1\} \otimes\{3\}+\{3\} \otimes\{2,1\} \\
& +\{1\} \otimes\{2,1\}+\{1\} \otimes\{0\} \tag{4.38}
\end{align*}
$$

" 70 " \rightarrow "spin- $\frac{1}{2}$ decuplet" + "spin- $\frac{3}{2}$ octet"

+ "spin- $\frac{1}{2}$ octet" + "spin- $\frac{1}{2}$ singlet."
Results (4.33), (4.36), and (4.38) agree with reductions quoted ${ }^{5}$ in the literature.

Table I shows reductions for the lowest IRs of $S U_{6}$. The dimensionality of $\left\{l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right\}$ is obtained from the formula ${ }^{12}$

$$
\begin{align*}
& d\left(\left\{l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right\}\right)=\left[\left(l_{1}-l_{2}+1\right)\left(l_{2}-l_{3}+1\right)\right. \\
& \times\left(l_{3}-l_{4}+1\right)\left(l_{4}-l_{5}+1\right)\left(l_{5}+1\right) \\
& \times\left(l_{1}-l_{3}+2\right)\left(l_{2}-l_{4}+2\right)\left(l_{3}-l_{5}+2\right)\left(l_{4}+2\right) \\
& \times\left(l_{1}-l_{4}+3\right)\left(l_{2}-l_{5}+3\right)\left(l_{3}+3\right)\left(l_{1}-l_{5}+4\right) \\
& \left.\times\left(l_{2}+4\right)\left(l_{1}+5\right)\right] /(1!2!3!4!5!) . \tag{4.39}
\end{align*}
$$

It is to be noted that the IRs of $S U_{2} \otimes S U_{3}$ contained in an IR of $S U_{6}$ of plurality p_{6} have duality and triality equal to $p_{6} \bmod 2$ and $p_{8} \bmod 3$, respectively, in accord with the theorem of Sec. II.

ACKNOWLEDGMENTS

One of the authors (C.R.H.) wishes to thank Professor Salam for hospitality at Imperial College. We are indebted to Professor Dyson for a communication of some of his results and his permission to include them in Table I.

Reduction of Representations of $S U_{m+n}$ with respect to the Subgroup $S U_{m} \otimes S U_{n}$

C. R. Hagen*
Department of Physics and Astronomy, University of Rochester, Rochester, New York
AND
A. J. Macfarlane \dagger
Department of Physics, Syracuse University, Syracuse, New York

(Received 18 January 1965)

Abstract

A direct and rapid method is described for the reduction of representations of the special unitary group $S U_{m+n}$ with respect to its $S U_{m} \otimes S U_{n}$ subgroup. The technique is illustrated by specific reference to the case of $S U_{6}$ and its $S U_{2} \otimes S U_{4}$ subgroup in the context of the recent extension of Wigner's $\left(S U_{4}\right)$ supermultiplet theory into the domain of particle physics. A tabulation of results is given for a slight generalization of this case where reduction is carried out with respect to $U_{1} \otimes S U_{2} \otimes S U_{4}$.

I. INTRODUCTION

IN the preceding paper by the present authors, ${ }^{1}$ a study was made of the branching rules for the special unitary group $S U_{m n}$ with respect to its $S U_{m} \otimes S U_{n}$ subgroup; i.e., it was shown how one can determine which irreducible representations of $S U_{m} \otimes S U_{n}$ occur in a given irreducible representation of $S U_{m n}$. This investigation was, of course, undertaken principally as a consequence of the great interest ${ }^{2}$ currently associated with the $S U_{6}$ theory of Gürsey, Radicati, ${ }^{3}$ Pais, ${ }^{4}$ and Sakita, ${ }^{5}$ in which the spin-unitary spin $S U_{2} \otimes S U_{3}$ subgroup of $S U_{6}$ occupies a vital position, and an extensive tabulation of results for this case was given in HM. However, later developments of the $S U_{6}$ theory ${ }^{6}$ also employ a different subgroup (the so-called unphysical subgroup $U_{1} \otimes S U_{2} \otimes S U_{4}$) whose precise significance in relation to the physical $S U_{2} \otimes S U_{3}$ subgroup is reviewed below. It is thus becoming increasingly clear that branching rules for the irreducible representations of $S U_{6}$ with respect to this unphysical subgroup may also be expected to be of considerable interest.

We consider here the derivation of branching rules for the special unitary group $S U_{m+n}$ with respect to its $S U_{m} \otimes S U_{n}$ subgroup. For the special case $m=2, n=4$ the method yields a prescription

[^12]for the determination of the representations of $S U_{2} \otimes S U_{4}$ contained in a given representation of $S U_{6}$. It is relatively straightforward to extend these results to the complete subgroup $U_{1} \otimes S U_{2} \otimes$ $S U_{4}$. Since U_{1} is the hypercharge gauge group (see next paragraph), such extension demands only the specification of the appropriate hypercharge eigenvalue associated with each $S U_{2} \otimes S U_{4}$ representation in a given reduction. Another case for which the general method of the present paper may be relevant is a recent work by Gell-Mann ${ }^{7}$ which involves an $S U_{6}$ group with an $S U_{3} \otimes S U_{3}$ subgroup. Reductions of the type considered here are also relevant in connection with the work of Moshinsky and his collaborators on Clebsch-Gordon coefficients of unitary groups. ${ }^{7 \mathrm{a}}$

We may best exhibit the relation (as well as the contrast) between the present and the preceding paper ${ }^{1}$ by referring to the $S U_{6}$ theory ${ }^{3-6}$ together with its physical and unphysical subgroups. Consider then the basis states of the defining representation of $S U_{8}$ to be the six states $\phi_{i i}(1 \leq i \leq 2$, $1 \leq j \leq 3$) of a spin- $\frac{1}{2}$-quark with baryon number $\frac{1}{3}$. Here the label i refers to ordinary spin, ($i=1$ to spin up and $i=2$ to spin down) and the label j refers to "unitary spin" ($j=1$ to the $I=I_{z}=\frac{1}{2}$, $Y=\frac{1}{3}$ state, $j=2$ to the $I=-I_{z}=\frac{1}{2}, Y=\frac{1}{3}$ state, and $j=3$ to the $I=0, Y=-\frac{2}{3}$ state). The physical $S U_{2} \otimes S U_{3}$ subgroup is realized by considering those transformations U of $S U_{0}$ which are of the form $U^{\prime} \otimes U^{\prime \prime}$, where U^{\prime} belongs to $S U_{2}$ and acts only on the spin label i, and $U^{\prime \prime}$ belongs to $S U_{3}$ and acts on the unitary spin label j of $\phi_{i j}$. To obtain the unphysical subgroup, consider those elements of $S U_{6}$ which do not mix states of different

[^13]Y, i.e., which transform the states $\phi_{i 3}(i=1,2)$ and the states $\phi_{i j}(1 \leq i, j \leq 2)$ independently among themselves. Writing the $\phi_{i j}$ now in the order $\phi_{13}, \phi_{23}, \phi_{11}, \phi_{12}, \phi_{21}, \phi_{22}$, the elements of the $S U_{2} \otimes$ $S U_{4}$ subgroup of $S U_{8}$ are of the form $U^{\prime} \oplus U^{\prime \prime}$, where U^{\prime} belongs to the $S U_{2}$ group of spin transformations of the $Y=-\frac{2}{3}$ or $S=-1$ (strangenessbearing) quark states, and $U^{\prime \prime}$ belongs to the $S U_{4}$ group of transformations of the spin, isospin states of the $Y=\frac{1}{3}$ or $S=0$ (non-strangeness-bearing) quark states. It is to be noted that the $S U_{4}$ group in question is of the same type as the $S U_{4}$ group of the Wigner supermultiplet theory ${ }^{8}$ and indeed the interest of the unphysical subgroup of $S U_{6}$ is closely related to this fact. Finally, it can be seen that hypercharge gauge transformations of the six basic states $\phi_{i i}$ commute with the $S U_{2} \otimes S U_{4}$ group so that we may realize $U_{1} \otimes S U_{2} \otimes S U_{4}$, where U_{1} is hypercharge gauge group, as the complete unphysical subgroup of $S U_{6}$.

The approach used here for the derivation of branching rules for $S U_{m+n}$ with respect to its $S U_{m} \otimes S U_{n}$ subgroup closely parallels the approach of our previous paper, ${ }^{1}$ despite the very different ways in which the product subgroups are imbedded in the parent group. The same concise versions of the Weyl character formula for special unitary groups are employed in an essentially identical fashion to achieve a direct rapid method of calculation rather than a general formula. Details are presented in the next section, with particular emphasis being given to the $S U_{6}$ and $S U_{2} \otimes S U_{4}$ groups. In the case of $U_{1} \otimes S U_{2} \otimes S U_{4}$ an extensive tabulation of results is appended.

II. DERIVATION OF BRANCHING RULES

We begin with a brief review of some essential notation introduced in Sec. III of HM together with certain results regarding characters of the unitary group $S U_{p}$.

The irreducible representations (IRs) of $S U_{p}$ can be put into one-to-one correspondence with Young diagrams of no more than ($p-1$) rows and, hence, are characterized by the notation ${ }^{9}$

$$
\begin{equation*}
\left\{l_{1}, l_{2}, \cdots, l_{p-1}\right\} \tag{2.1}
\end{equation*}
$$

where l_{i} gives the number of boxes of the i th row of the Young diagram and satisfies

$$
\begin{equation*}
l_{1} \geq l_{2} \geq \cdots \geq l_{p-1} \geq 0 \tag{2.2}
\end{equation*}
$$

[^14]We denote by $\chi\left(\left\{l_{1}, l_{2}, \cdots l_{p-1}\right\}, \epsilon_{1}, \epsilon_{2}, \cdots \epsilon_{p}\right)$ the character of the IR (2.1) of $S U_{p}$ corresponding to an element of $S U_{p}$ with eigenvalues $\epsilon_{i}(1 \leq i \leq p)$ where $\left|\epsilon_{i}\right|=1$ and $\epsilon_{1} \epsilon_{2} \cdots \epsilon_{p}=1$. We wish to use certain concise formulas given in HM which express χ in terms of fundamental symmetric functions of the ϵ_{i}. These are the so called elementary symmetric functions

$$
\begin{align*}
& a_{1}=\sum_{i} \epsilon_{i}, \\
& a_{2}=\sum_{i<i} \epsilon_{i} \epsilon_{i} \tag{2.3}\\
& a_{3}=\sum_{i<i<k} \epsilon_{i} \epsilon_{i} \epsilon_{k}, \\
& \vdots \\
& a_{p}=\epsilon_{1} \epsilon_{2} \cdots \epsilon_{p}=1,
\end{align*}
$$

and the homogeneous product sums

$$
\begin{align*}
& h_{1}=\sum_{i} \epsilon_{i}=a_{1}, \\
& h_{2}=\sum_{i \leq j} \epsilon_{i} \epsilon_{i}, \tag{2.4}\\
& h_{3}=\sum_{i \leq i \leq k} \epsilon_{i} \epsilon_{i} \epsilon_{k},
\end{align*}
$$

We further define $a_{0}=1, a_{r}=0$ for $r<0$ and $r>p, h_{0}=1$ and $h_{r}=0$ for $r<0$. It is to be noted that while h_{r} is defined by (2.4) for all $r>0$, the h_{r} for $r>p$ are algebraically dependent on the h_{r} for $r \leq p$. The relationship of the a_{i} and the h_{i} and some of their properties have been discussed in Sec. III of HM, the well-known book by Littlewood ${ }^{10}$ having been the source of most of the material in question. In terms of the h_{i}, we have the result

$$
\begin{align*}
& \chi\left(\left\{l_{1}, l_{2}, \cdots l_{p-1}\right\}, \epsilon_{1}, \cdots \epsilon_{p}\right) \\
& \quad=\left|\begin{array}{llll}
h_{l_{2}} & h_{l_{1}+1} & \cdots & h_{l_{1}+p-2} \\
h_{l_{2}-1} & h_{l_{2}} & \cdots & h_{l_{z}+p-3} \\
\vdots & & & \\
h_{l_{p-1}-p+2} & & \cdots & h_{l_{p-1}}
\end{array}\right| \tag{2.5}
\end{align*}
$$

and in terms of the a_{i}, we have

$$
\begin{align*}
& \chi\left(\left\{l_{1}, l_{2}, \cdots, l_{p-1}\right\}, \epsilon_{1}, \cdots\right. \\
& \left.\epsilon_{p}\right) \tag{2.6}\\
& =\left|\begin{array}{llll}
a_{\lambda_{1}} & a_{\lambda_{1}+1} & \cdots & a_{\lambda_{1}+Q-1} \\
a_{\lambda_{2}-1} & a_{\lambda_{2}} & \cdots & a_{\lambda_{2}+a-2} \\
\vdots & & & \\
a_{\lambda_{q}-q+1} & & \cdots & a_{\lambda_{q}}
\end{array}\right|,
\end{align*}
$$

${ }^{10}$ D. E. Littlewood, Theory of Group Characters (Oxford University Press, London, 1950), 2nd ed., especially Chaps. 5 and 6.
where $\left\{\lambda_{1}, \lambda_{2}, \cdots, \lambda_{4}\right\}$ is the Young diagram conjugate to the Young diagram $\left\{l_{1}, l_{2}, \cdots, l_{p-1}\right\}$; i.e., λ_{j} is the number of boxes in the j th column of the latter Young diagram. We note (cf. HM, Sec. III) that q is not necessarily less than ($p-1$) and that (2.6) should be used whenever the IR [Eq. (2.1)] of $S U_{p}$ has fewer columns than rows. We further remark (cf. HM, Sec. III) that, for IRs $\{l, 0, \cdots 0\}$ (totally symmetric l th rank tensors), Eq. (2.5) reduces to

$$
\begin{equation*}
\chi\left(\{l\}, \epsilon_{1}, \epsilon_{2}, \cdots \epsilon_{p}\right)=h_{l} \tag{2.7}
\end{equation*}
$$

and that for the j th fundamental $\operatorname{IR}\left\{1^{j}, 0, \cdots 0\right\} \equiv$ $\left\{1^{j}\right\}, 1 \leq j \leq p-1$ [Eq. (2.6)] reduces to

$$
\begin{equation*}
\chi\left(\left\{1^{i}\right\}, \epsilon_{1}, \epsilon_{2}, \cdots \epsilon_{p}\right)=a_{i} . \tag{2.8}
\end{equation*}
$$

We now turn to the question of branching rules for $S U_{m+n}$ with respect to its subgroup $S U_{m} \otimes S U_{n}$. To this end, we consider elements U of $S U_{m+n}$ of the form

$$
U=\left[\begin{array}{cc}
U^{\prime} & 0 \tag{2.9}\\
0 & U^{\prime \prime}
\end{array}\right]
$$

where $U^{\prime}, U^{\prime \prime}$ are, respectively, elements of $S U_{m}$ and $S U_{n}$. Thus to reduce the $\operatorname{IR}\left\{l_{1}, l_{2}, \cdots, l_{m+n-1}\right\}$ with respect to $S U_{m} \otimes S U_{n}$, we must impose the restrictions

$$
\begin{align*}
& \epsilon_{1} \epsilon_{2} \cdots \epsilon_{m}=1 \tag{2.10a}\\
& \epsilon_{m+1} \epsilon_{m+2} \cdots \epsilon_{m+n}=1 \tag{2.10b}
\end{align*}
$$

on the ϵ_{1} which appear in its character formula. Then, by expressing the homogenous product sums h_{i} of the $\epsilon_{a}(1 \leq a \leq m+n)$, subject to (2.10), in terms of the homogeneous product sums h_{i}^{\prime} of the $\epsilon_{b}(1 \leq b \leq m)$, subject to (2.10a), and the homogeneous product sums $h_{k}^{\prime \prime}$ of the $\epsilon_{\mathrm{c}}(m+1 \leq$ $c \leq m+n$), subject to (2.10b), one can use the Clebsch-Gordan ${ }^{11}$ series for $S U_{m}$ and $S U_{n}$ in the expansion of the determinant (2.5) with $p=m+n$ to obtain the desired reduction of the IR of $S U_{m+n}$ in question. Of course, if the IR of $S U_{m+n}$ has fewer columns than rows, one would express a_{i} in terms of a_{i}^{\prime} and $a_{k}^{\prime \prime}$ (in obvious notation) and use Eq. (2.6) rather than (2.5). To obtain the expressions for h_{i} and a_{i} alluded to in the previous sentences, we may refer directly to Littlewood for the results ${ }^{12}$

$$
\begin{array}{ll}
h_{r}=\sum_{i=0}^{r} h_{r-i}^{\prime} h_{i}^{\prime \prime}, & 0 \leq r \leq \infty \\
a_{r}=\sum_{i=0}^{r} a_{r-i}^{\prime} a_{i}^{\prime \prime}, & 0 \leq r \leq m+n \tag{2.12}
\end{array}
$$

[^15]We recall, in connection with the latter equation, that $a_{i}^{\prime}=0$ for $i>m$, and $a_{i}^{\prime \prime}=0$ for $i>n$. The results given are sufficient for a direct treatment to be made of any IR of $S U_{m+n}$. We further note the following general result given by Littlewood ${ }^{13}$: The number of times the IR $\Gamma^{\nu} \otimes \Gamma^{\prime \prime}$ of $S U_{m} \otimes S U_{n}$ is contained in the IR Γ of $S U_{m+n}$ equals the number of times Γ occurs in the direct product of those IRS of $S U_{m+n}$ which correspond, respectively, to the same Young diagrams as Γ^{\prime} and $\Gamma^{\prime \prime}$. While this result allows an easy check on any statement made regarding the $S U_{m} \otimes S U_{n}$ content of an IR of $S U_{m+n}$, it does not seem possible to use it as the basis of a rapid direct approach to derivation of branching rules. ${ }^{14}$

It will be convenient to illustrate our method with reference to the $S U_{2} \otimes S U_{4}$ subgroup of $S U_{6}$, returning later to those slight extensions of the method needed for the $U_{1} \otimes S U_{2} \otimes S U_{4}$ subgroup. We first consider the fundamental IRs of $S U_{6}$. From (2.12) we have, in the same notation as employed above in the general discussion,

$$
\begin{align*}
& a_{1}=a_{1}^{\prime}+a_{1}^{\prime \prime}, \\
& a_{2}=1+a_{1}^{\prime} a_{1}^{\prime \prime}+a_{2}^{\prime \prime}, \\
& a_{3}=a_{1}^{\prime \prime}+a_{1}^{\prime} a_{2}^{\prime \prime}+a_{3}^{\prime \prime}=a_{3}^{*}, \tag{2.13}\\
& a_{4}=a_{2}^{\prime \prime}+a_{1}^{\prime} a_{3}^{\prime \prime}+1=a_{2}^{*}, \\
& a_{5}=a_{3}^{\prime \prime}+a_{1}^{\prime}=a_{1}^{*},
\end{align*}
$$

since $a_{0}^{\prime}=a_{2}^{\prime}=a_{0}^{\prime \prime}=a_{1}^{\prime \prime}=1, a_{1}^{\prime}=a_{1}^{\prime *}, a_{1}^{\prime \prime}=a_{3}^{\prime \prime *}$ and $a_{2}^{\prime \prime}=a_{2}^{\prime \prime *}$. Hence, from Eq. (2.8) we deduce the branching rules

$$
\begin{align*}
& \{1\} \rightarrow\{1\} \otimes\{0\}+\{0\} \otimes\{1\}, \\
& \left\{1^{2}\right\} \rightarrow\{0\} \otimes\{0\}+\{1\} \otimes\{1\}+\{0\} \otimes\left\{1^{2}\right\}, \\
& \left\{1^{3}\right\} \rightarrow\{0\} \otimes\{1\}+\{1\} \otimes\left\{1^{2}\right\}+\{0\} \otimes\left\{1^{3}\right\}, \tag{2.14}\\
& \left\{1^{4}\right\} \rightarrow\{0\} \otimes\left\{1^{2}\right\}+\{1\} \otimes\left\{1^{3}\right\}+\{0\} \otimes\{0\}, \\
& \left\{1^{5}\right\} \rightarrow\{0\} \otimes\left\{1^{3}\right\}+\{1\} \otimes\{0\}
\end{align*}
$$

for the fundamental IRs of $S U_{8}$. On the right of Eq. (2.14) (and hereafter) the first part refers to the $S U_{2} \mathrm{IR}$, with $l=2 j$ giving the connection of $\{l\}$ to the corresponding angular momentum quantum number, while the second part refers to the $S U_{4}$ part.

To illustrate the general method, we treat the 56- , 35- , and 70-dimensional IRs of $S U_{6}$ which have featured centrally in physical discussions of

[^16]the $S U_{6}$ theory. The 56 -dimensional IR is $\{3\}$ and from (2.7) and (2.11) we deduce immediately
\[

$$
\begin{align*}
\{3\} \rightarrow\{3\} \otimes & \{0\}+\{2\} \otimes\{1\} \\
& +\{1\} \otimes\{2\}+\{0\} \otimes\{3\} \tag{2.15}\\
56=(4 \times 1) & +(3 \times 4) \\
& +(2 \times 10)+(1 \times 20)
\end{align*}
$$
\]

the lower line being a check by dimensionalities. The 35 -dimensional IR is the regular representation $\{2,1,1,1,1\}$. Using Eq. (2.6) and Eq. (2.13), we get

$$
\begin{align*}
\chi(\{2,1,1,1,1\}) & =\left|\begin{array}{ll}
a_{5} & a_{6} \\
1 & a_{1}
\end{array}\right| \\
& =\left(a_{1}^{\prime}+a_{1}^{\prime \prime}\right)\left(a_{1}^{\prime}+a_{3}^{\prime \prime}\right)-1 \tag{2.16}
\end{align*}
$$

and hence, using simple CG series ${ }^{10}$ for $S U_{2}$ and $S U_{4}$, we find directly

$$
\begin{gather*}
\{2,1,1,1,1\} \rightarrow\{2\} \otimes\{0\}+\{1\} \otimes\left\{1^{3}\right\}+\{1\} \\
\otimes\{1\}+\{0\} \otimes\{0\}+\{0\} \otimes\{2,1,1\} \tag{2.17}
\end{gather*}
$$

with the check

$$
\begin{aligned}
35=(3 \times 1) & +(2 \times 4) \\
& +(2 \times 4)+(1 \times 1)+(1 \times 15)
\end{aligned}
$$

by dimensionalities. The 70 -dimensional IR is $\{2,1\}$, and we use Eqs. (2.5) and (2.11) to find

$$
\begin{align*}
\chi(\{2,1\})= & \left|\begin{array}{ll}
h_{2} & h_{3} \\
1 & h_{1}
\end{array}\right| \\
= & \left(h_{2}^{\prime}+h_{1}^{\prime} h_{1}^{\prime \prime}+h_{2}^{\prime \prime}\right)\left(h_{1}^{\prime}+h_{1}^{\prime \prime}\right) \\
& -\left(h_{3}^{\prime}+h_{2}^{\prime} h_{1}^{\prime \prime}+h_{1}^{\prime} h_{2}^{\prime \prime}+h_{3}^{\prime \prime}\right) . \tag{2.18}
\end{align*}
$$

Hence, with the aid of Eq. (2.7) and simple CG series, ${ }^{11}$ we obtain the result

$$
\begin{align*}
& \{2,1\} \rightarrow\{1\} \otimes\{0\}+\{2\} \otimes\{1\}+\{0\} \otimes\{1\} \\
& +\{1\} \otimes\{2\}+\{1\} \otimes\left\{1^{2}\right\}+\{0\} \otimes\{2,1\} \quad(2.1 \tag{2.19}
\end{align*}
$$

with the check

$$
\begin{aligned}
70=(2 \times 1) & +(3 \times 4)+(1 \times 4) \\
& +(2 \times 10)+(2 \times 6)+(1 \times 20)
\end{aligned}
$$

by dimensionalities.
In order to obtain reductions for IRs of $S U_{6}$ with respect to the full unphysical subgroup, we must make a slight extension of the previous considerations, since the unphysical subgroup is not $S U_{2} \otimes$ $S U_{4}$ but rather $U_{1} \otimes S U_{2} \otimes S U_{4}$. The U_{1} gauge group comes in, as explained in the introduction, because of the existence of the hypercharge gauge group which commutes with the $S U_{2} \otimes S U_{4}$ subgroup of $S U_{6}$. In terms of the ordering $\phi_{13}, \phi_{23}, \phi_{11}$, $\phi_{12}, \phi_{21}, \phi_{22}$ of basis states of the defining representation, we can write hypercharge transformations in
the form

$$
\begin{equation*}
e^{i Y \theta}=\eta^{-\frac{2}{5}} \mathbb{1} \oplus \eta^{\frac{1}{2}} \mathbb{1} \tag{2.20}
\end{equation*}
$$

where

$$
\begin{equation*}
\eta=e^{i \theta}, \quad Y=-\frac{2}{3} \mathbb{I} \oplus \frac{1}{3} \mathbb{I} \tag{2.21}
\end{equation*}
$$

which clearly exhibits commutativity with the elements $U=U^{\prime} \oplus U^{\prime \prime}$ of $S U_{2} \otimes S U_{4}$. The reduction of IRs of $S U_{6}$ with respect to $U_{1} \otimes S U_{2} \otimes S U_{4}$ is simply effected by the association of an appropriate hypercharge eigenvalue with each IR of $S U_{2} \otimes S U_{4}$ encountered in the application of the methods of the previous paragraph. We can, however, easily determine the appropriate hypercharge eigenvalues by a simple extension of the previous method. To this end we consider elements of $S U_{6}$ of the form $\mathcal{U}=$ $e^{i Y \theta} U$, where $e^{i Y \theta}$ is given by Eq. (2.20) and $U=$ $U^{\prime} \oplus U^{\prime \prime}$ is an element of $S U_{2} \otimes S U_{4}$ of the type discussed above. The eigenvalues $\bar{\epsilon}_{i}(1 \leq i \leq 6)$ of \mathcal{U} can be written as
$\bar{\epsilon}_{i}=\epsilon_{i} \eta^{-\frac{3}{2}}(i=1,2) \quad$ with $\quad \epsilon_{1} \epsilon_{2}=1$,
$\bar{\epsilon}_{i}=\epsilon_{i} \eta^{\frac{3}{3}} \quad(i=3,4,5,6)$ with $\epsilon_{3} \epsilon_{4} \epsilon_{5} \epsilon_{6}=1$,
and we must express the homogeneous product sums h_{r} and the elementary symmetric functions a_{r} of the $\bar{\epsilon}_{i}$ in terms of η and the same quantities h^{\prime}, $h^{\prime \prime}, a^{\prime}$, and $a^{\prime \prime}$, as occur above. The desired expressions easily follow from the $m=2, n=4$ cases of Eqs. (2.11) and (2.12), since $h, h^{\prime}, h^{\prime \prime}, a, a^{\prime}$, and $a^{\prime \prime}$ are homogeneous functions of their arguments. They are readily found to be

$$
\begin{align*}
& h_{r}=\sum_{i=0}^{r} h_{r-i}^{\prime} h_{i}^{\prime \prime} \eta^{-\frac{2}{r+i}} \quad(r \geq 0), \tag{2.24}\\
& a_{r}=\sum_{i=0}^{r} a_{r-i}^{\prime} a_{i}^{\prime \prime} \eta^{-\frac{2}{r} r+} \tag{2.25}
\end{align*}
$$

Clearly, we can use Eq. (2.24) along with Eq. (2.5) in the present case exactly as we used (the $m=2$, $n=4$ version of) Eq. (2.11) along with Eq. (2.5) in the previous paragraph. The only difference is that associated with each term of the final simplified character formula we have now a power of η whose exponent gives the hypercharge eigenvalue of the corresponding $S U_{2} \otimes S U_{4}$ representation. It is clear that an entirely analogous statement applies to the formulas based on the functions a_{r}.

A table of results for various IRs of $S U_{6}$ (lowdimensional ones or those used in the discussion of the physical group $S U_{6} / Z_{3}$) is appended. The dimensionality formula for $S U_{8}$ is

$$
\begin{aligned}
& D\left(\left\{l_{1}, l_{2}, l_{3}, l_{4}, l_{5}\right\}\right)=\left[\left(l_{1}-l_{2}+1\right)\left(l_{2}-l_{3}+1\right)\right. \\
& \times\left(l_{3}-l_{4}+1\right)\left(l_{4}-l_{5}+1\right)\left(l_{5}+1\right)
\end{aligned}
$$

Table I. Hexalities of IRs of $S U_{6}$ and the reduction with respect to $U_{1} \otimes S U_{2} \otimes S U_{4}$.

IR of $S U_{6}$	Dimensionality	Hexality	$U_{1} \otimes S U_{2} \otimes S U_{4}$ content
\{1\}	6	1	$\left(-\frac{2}{3}\right)\{1\} \otimes\{0\}+\left(\frac{1}{3}\right)\{0\} \otimes\{1\}$
\{1, 1\}	15	2	$\left(-\frac{4}{3}\right)\{0\} \otimes\{0\}+\left(-\frac{1}{3}\right)\{1\} \otimes\{1\}+\left(\frac{2}{3}\right)\{0\} \otimes\{1,1\}$
\{1, 1, 1\}	20	3	$(-1)\{0\} \otimes\{1\}+(0)\{1\} \otimes\{1,1\}+(1)\{0\} \otimes\{1,1,1\}$
\{1, 1, 1, 1\}	15	4	$\left(-\frac{2}{3}\right)\{0\} \otimes\{1,1\}+\left(\frac{1}{3}\right)\{1\} \otimes\{1,1,1\}+\left(\frac{4}{3}\right)\{0\} \otimes\{0\}$
\{1, 1, 1, 1, 1\}	6	5	$\left(-\frac{1}{3}\right)\{0\} \otimes\{1,1,1\}+\left(\frac{2}{3}\right)\{1\} \otimes\{0\}$
\{2\}	21	2	$\left(-\frac{4}{8}\right)\{2\} \otimes\{0\}+\left(\frac{2}{3}\right)\{0\} \otimes\{2\}+\left(-\frac{1}{3}\right)\{1\} \otimes\{1\}$
$\{2,1,1,1,1\}$	35	0	$\begin{aligned} & (0)\{2\} \otimes\{0\}+(-1)\{1\} \otimes\{1,1,1\}+(1)\{1\} \otimes\{1\}+(0)\{0\} \otimes\{0\}+ \\ & (0)\{0\} \otimes\{2,1,1\} \end{aligned}$
\{3\}	56	3	$(-2)\{3\} \otimes\{0\}+(-1)\{2\} \otimes\{1\}+(0)\{1\} \otimes\{2\}+(1)\{0\} \otimes\{3\}$
$\{2,1\}$	70	3	$\begin{aligned} & (-2)\{1\} \otimes\{0\}+(-1)\{2\} \otimes\{1\}+(-1)\{0\} \otimes\{1\}+(0)\{1\} \otimes\{2\}+ \\ & (0)\{1\} \otimes 1,1\}+(1)\{0\} \otimes\{2,1\} \end{aligned}$
$\{2,1,1,1\}$	84	5	$\begin{aligned} & \left(-\frac{4}{3}\right)\{1\} \otimes\{1,1\}+\left(-\frac{1}{3}\right)\{2\} \otimes\{1,1,1\}+\left(\frac{8}{3}\right)\{0\} \otimes\{1\}+\left(-\frac{1}{3}\right)\{0\} \otimes \\ & \{1,1,1\}+\left(\frac{2}{3}\right)\{1\} \otimes\{0\}+\left(\frac{2}{3}\right)\{1\} \otimes\{2,1,1\}+\left(-\frac{1}{3}\right)\{0\} \otimes\{2,1\} \end{aligned}$
\{2, 2\}	105	4	$\begin{aligned} & \left(-\frac{8}{3}\right)\{0\} \otimes\{0\}+\left(-\frac{5}{3}\right)\{1\} \otimes\{1\}+\left(-\frac{2}{3}\right)\{0\} \otimes\{1,1\}+\left(-\frac{2}{3}\right)\{2\} \otimes \\ & \{2\}^{2}+\left(\frac{4}{3}\right)\{0\} \otimes\{2,2\}+\left(\frac{1}{3}\right)\{1\} \otimes\{2,1\} \end{aligned}$
$\{2,1,1\}$	105	4	$\begin{aligned} & \left(-\frac{8}{3}\right)\{1\} \otimes\{1\}+\left(-\frac{2}{3}\right)\{2\} \otimes\{1,1\}+\left(\frac{4}{3}\right)\{0\} \otimes\{2,1,1\}+\left(-\frac{2}{3}\right)\{0\} \otimes \\ & \{2\}+\left(-\frac{2}{3}\right)\{0\} \otimes\{1,1\}+\left(\frac{1}{3}\right)\{1\} \otimes\{2,1\}+\left(\frac{1}{3}\right)\{1\} \otimes\{1,1,1\} \end{aligned}$
\{4\}	126	4	$\begin{aligned} & \left(-\frac{8}{3}\right)\{4\} \otimes\{0\}+\left(-\frac{5}{3}\right)\{3\} \otimes\{1\}+\left(-\frac{2}{3}\right)\{2\} \otimes\{2\}+\left(\frac{1}{3}\right)\{1\} \otimes\{3\}+ \\ & \left(\frac{4}{3}\right)\{0\} \otimes\{4\} \end{aligned}$
\{2, 2, 2\}	175	0	$\begin{aligned} & (-2)\{0\} \otimes\{2\}+(-1)\{1\} \otimes\{2,1\}+(0)\{0\} \otimes\{2,1,1\}+(0)\{2\} \otimes \\ & \{2,2\}+(2)\{0\} \otimes\{2,2,2\}+(1)\{1\} \otimes\{2,2,1\} \end{aligned}$
\{2, 2, 1, 1\}	189	0	$\begin{aligned} & (-2)\{0\} \otimes\{1,1\}+(-1)\{1\} \otimes\{1,1,1\}+(0)\{0\} \otimes\{0\}+(-1)\{1\} \otimes \\ & \{2,1\}+(0)\{2\} \otimes\{2,1,1\}+(0)\{0\} \otimes\{2,1,1\}+(1)\{1\} \otimes\{1\}+ \\ & (0)\{0\} \otimes\{2,2\}+(2)\{0\} \otimes\{1,1\}+(1)\{1\} \otimes\{2,2,1\} \end{aligned}$
$\{3,1$ \}	210	4	$\begin{aligned} & \left(-\frac{8}{3}\right)\{2\} \otimes\{0\}+\left(-\frac{5}{3}\right)\{3\} \otimes\{1\}+\left(-\frac{8}{3}\right)\{1\} \otimes\{1\}+\left(-\frac{2}{3}\right)\{2\} \otimes\{1,1\}+ \\ & \left(-\frac{2}{3}\right)\{2\} \otimes\{2\}+\left(-\frac{2}{3}\right)\{0\} \otimes\{2\}+\left(\frac{1}{3}\right)\{1\} \otimes\{3\}+\left(\frac{1}{3}\right)\{1\} \otimes\{2,1\}+ \\ & \left(\frac{4}{3}\right)\{0\} \otimes\{3,1\} \end{aligned}$
$\{2,2,1\}$	210	5	$\begin{aligned} & \left(-\frac{7}{3}\right)\{0\} \otimes\{1\}+\left(-\frac{1}{3}\right)\{0\} \otimes\{1,1,1\}+\left(-\frac{4}{3}\right)\{1\} \otimes\{2\}+\left(-\frac{4}{3}\right)\{1\} \otimes \\ & \{1,1\}+\left(-\frac{1}{3}\right)\{2\} \otimes\{2,1\}+\left(\frac{2}{3}\right)\{1\} \otimes\{2,1,1\}+\left(-\frac{1}{3}\right)\{0\} \otimes\{2,1\}+ \\ & \left(\frac{2}{3}\right)\{1\} \otimes\{2,2\}+\left(\frac{5}{3}\right)\{0\} \otimes\{2,2,1\} \end{aligned}$
\{5\}	252	5	$\begin{aligned} & \left(-\frac{10}{3}\right)\{5\} \otimes\{0\}+\left(-\frac{1}{3}\right)\{2\} \otimes\{3\}+\left(-\frac{4}{3}\right)\{3\} \otimes\{2\}+\left(\frac{5}{3}\right)\{0\} \otimes\{5\}+ \\ & \left(-\frac{7}{3}\right)\{4\} \otimes\{1\}+\left(\frac{2}{3}\right)\{1\} \otimes\{4\} \end{aligned}$

$\times\left(l_{1}-l_{3}+2\right)\left(l_{2}-l_{4}+2\right)\left(l_{3}-l_{5}+2\right)$
$\times\left(l_{4}+2\right)\left(l_{1}-l_{4}+3\right)\left(l_{2}-l_{5}+3\right)\left(l_{3}+3\right)$
$\left.\times\left(l_{1}-l_{5}+4\right)\left(l_{2}+4\right)\left(l_{1}+5\right)\right](1!2!3!4!5!)^{-1}$,
while those for $S U_{2}$ and $S U_{4}$ are

$$
D(\{l\})=l+1
$$

$D\left(\left\{l_{1}, l_{2}, l_{3}\right\}\right)$
$=\left[\left(l_{1}-l_{2}+1\right)\left(l_{2}-l_{3}+1\right)\left(l_{3}+1\right)\right.$

$$
\begin{equation*}
\left.\times\left(l_{1}-l_{3}+2\right)\left(l_{2}+2\right)\left(l_{1}+3\right)\right](1!2!3!)^{-1} \tag{2.27}
\end{equation*}
$$

respectively. These formulas can be used as above to give a check by dimensionalities. ${ }^{15}$ A further check on these results is provided by the pluralities ${ }^{9}$ of

[^17]the IRs of $S U_{6}, S U_{4}$, and $S U_{2}$ as expressed by the "equation"
hexality of $S U_{6}(\bmod 2)$ - duality of $S U_{2}$

- quadrality of $S U_{4}$

$$
\begin{equation*}
(\bmod 2)=0(\bmod 2) . \tag{2.29}
\end{equation*}
$$

Finally, we note that on transcription to the highest weight notation $(\alpha, \beta, \gamma, \delta, \epsilon)^{9}$ for IRs of $S U_{6}$, the results of Table I can be readily used to determine the reduction of the complex-conjugate IRs (ϵ, δ, $\gamma, \beta, \alpha)$.

Table I of HM) and the known ${ }^{16} Y$ content of $S U_{3}$ IRs, we may obtain the multiplicity of each Y value in any given IR of $S U_{6}$. This can be compared with what follows from Table I of the present work and use of known dimensionalities for $S U_{2}$ and $S U_{1}$ IRs.
${ }_{10}^{16}$ C. R. Hageu and A. J. Macfarlane, J. Math. Phys. 5, 1335 (1964).

Table I. (Continued).

IR of $S U_{6}$	Dimensionality	Hexality	$U_{1} \otimes S U_{2} \otimes S U_{4}$ content
$\{3,1,1,1\}$	280	0	$\begin{aligned} & (-2)\{2\} \otimes\{1,1\}+(-1)\{3\} \otimes\{1,1,1\}+(-1)\{1\} \otimes\{1,1,1\}+ \\ & (-1)\{1\} \otimes\{2,1\}+(0)\{2\} \otimes\{0\}+(0)\{2\} \otimes\{2,1,1\}+(2)\{0\} \otimes\{2\}+ \\ & (0)\{0\} \otimes\{2,1,1\}+(0)\{0\} \otimes\{3,1\}+(1)\{1\} \otimes\{3,1,1\}+(1)\{1\} \otimes\{1\} \end{aligned}$
$\{4,2,2,2,2\}$	405	0	$\begin{aligned} & (0)\{4\} \otimes\{0\}+(-1)\{3\} \otimes\{1,1,1\}+(1)\{3\} \otimes\{1\}+(-1)\{1\} \otimes \\ & \{1,1,1\}+(0)\{0\} \otimes\{2,1,1\}+(2)\{2\} \otimes\{2\}+(0)\{2\} \otimes\{0\}+(0)\{2\} \otimes \\ & \{2,1,1\}+(1)\{1\} \otimes\{1\}+(1)\{1\} \otimes\{3,1,1\}+(-2)\{2\} \otimes \\ & \{2,2,2\}+(-1)\{1\} \otimes\{3,2,2\}+(0)\{0\} \otimes\{4,2,2\}+(0)\{0\} \otimes\{0\} \end{aligned}$
\{6]	462	0	$\begin{aligned} & (-4)\{6\} \otimes\{0\}+(-1)\{3\} \otimes\{3\}+(-2)\{4\} \otimes\{2\}+(-3)\{5\} \otimes\{1\}+ \\ & (0)\{2\} \otimes\{4\}+(2)\{0\} \otimes\{6\}+(1)\{1\} \otimes\{5\} \end{aligned}$
$\{3,3\}$	490	0	$\begin{aligned} & (-4)\{0\} \otimes\{0\}+(-3)\{1\} \otimes\{1\}+(-2)\{2\} \otimes\{2\}+(-2)\{0\} \otimes \\ & \{1,1\}+(-1)\{3\} \otimes(3\}+(0)\{2\} \otimes\{3,1\}+(-1)\{1\} \otimes\{2,1\}+(2)\{0\} \otimes \\ & \{3,3\}+(1)\{1\} \otimes\{3,2\}+(0)\{0\} \otimes\{2,2\} \end{aligned}$
$\{3,2,2,1,1\}$	540	3	$\begin{aligned} & (1)\{2\} \otimes\{1,1,1\}+(0)\{3\} \otimes\{1,1\}+(-2)\{1\} \otimes\{2,1,1\}+(2)\{1\} \otimes \\ & \{2,1,1\}+(1)\{2\} \otimes\{2,1\}+(-1)\{0\} \otimes\{3,1,1\}+(1)\{0\} \otimes\{3,2,2\}+ \\ & (1)\{0\} \otimes\{2,1\}+(1)\{0\} \otimes\{1,1,1\}+(-1)\{2\} \otimes\{2,2,1\}+(-1)\{0\} \otimes \\ & \{2,2,1\}+(-1)\{2\} \otimes\{1\}+(-1)\{0\} \otimes\{1\}+(0)\{1\} \otimes\{2,2,2\}+ \\ & (0)\{1\} \otimes\{3,2,1\}+(0)\{1\} \otimes\{1,1\}+(0)\{1\} \otimes\{2\}+(0)\{1\} \otimes\{1,1\} \end{aligned}$
$\{3,2,2,2\}$	560	3	$(1)\{2\} \otimes\{1,1,1\}+(0)\{3\} \otimes\{2,2,2\}+(0)\{1\} \otimes\{2,2,2\}+(-2)\{1\} \otimes$ $\{2,2\}+(-1)\{2\} \otimes\{2,2,1\}+(3)\{0\} \otimes\{1\}+(2)\{1\} \otimes\{2,1,1\}+$ $(2)\{1\} \otimes\{0\}+(1)\{0\} \otimes\{1,1,1\}+(1)\{0\} \otimes\{2,1\}+(1)\{2\} \otimes\{3,2,2\}+$ $(-1)\{0\} \otimes\{3,2\}+(-1)\{0\} \otimes\{2,2,1\}+(0)\{1\} \otimes\{3,2,1\}+(0)\{1\} \otimes\{1,1\}$
$\{5,1,1,1,1\}$	700	3	$\begin{aligned} & (-2)\{5\} \otimes\{0\}+(1)\{2\} \otimes\{3\}+(-3)\{4\} \otimes\{1,1,1\}+(-1)\{4\} \otimes\{1\}+ \\ & (0)\{3\} \otimes\{2\}+(0)\{1\} \otimes\{2\}+(2)\{1\} \otimes\{4\}+(-2)\{3\} \otimes\{0\}+(1)\{0\} \otimes \\ & \{3\}+(-2)\{3\} \otimes\{2,1,1\}+(-1)\{2\} \otimes\{3,1,1\}+(0)\{1\} \otimes\{4,1,1\}+ \\ & (1)\{0\} \otimes\{5,1,1\} \end{aligned}$
$\{3,3,3\}$	980	3	$\begin{aligned} & (-3)\{0\} \otimes\{3\}+(-2)\{1\} \otimes\{3,1\}+(-1)\{2\} \otimes\{3,2\}+(1)\{0\} \otimes\{3,2,2\}+ \\ & (0)\{1\} \otimes\{3,2,1\}+(-1)\{0\} \otimes\{3,1,1\}+(0)\{3\} \otimes\{3,3\}+(2)\{1\} \otimes \\ & \{3,3,2\}+(1)\{2\} \otimes\{3,3,1\}+(3)\{0\} \otimes\{3,3,3\} \end{aligned}$
$\{5,1\}$	1050	0	$\begin{aligned} & (-4)\{4\} \otimes\{0\}+(-1)\{1\} \otimes\{3\}+(-2)\{2\} \otimes\{2\}+(1)\{1\} \otimes\{5\}+ \\ & (-3)\{3\} \otimes\{1\}+(0)\{2\} \otimes\{4\}+(0)\{0\} \otimes\{4\}+(-3)\{5\} \otimes\{1\}+(0)\{2\} \otimes \\ & \{3,1\}+(-1)\{3\} \otimes\{2,1\}+(-1)\{3\} \otimes\{3\}+(2)\{0\} \otimes\{5,1\}+(-2)\{4\} \otimes \\ & \{2\}+(-2)\{4\} \otimes\{1,1\}+(1)\{1\} \otimes\{4,1\} \end{aligned}$
\{4,2\}	1134	0	$\begin{aligned} & (-4)\{2\} \otimes\{0\}+(-3)\{3\} \otimes\{1\}+(-2)\{4\} \otimes\{2\}+(-3)\{1\} \otimes\{1\}+ \\ & (-1)\{3\} \otimes\{3\}+(-2)\{2\} \otimes\{2\}+(-2)\{2\} \otimes\{1,1\}+(-2)\{0\} \otimes\{2\}+ \\ & (-1)\{3\} \otimes\{2,1\}+(-1)\{1\} \otimes\{3\}+(-1)\{1\} \otimes\{2,1\}+(0)\{2\} \otimes\{4\}+ \\ & (0)\{2\} \otimes\{3,1\}+(0)\{2\} \otimes\{2,2\}+(0)\{0\} \otimes\{3,1\}+(1)\{1\} \otimes\{4,1\}+ \\ & (1)\{1\} \otimes\{3,2\}+(2)\{0\} \otimes\{4,2\} \end{aligned}$
$\{4,2,1,1,1\}$	1134	3	
$\{3,3,2,1\}$	1960	3	$(-3)\{0\} \otimes\{2,1\}+(-2)\{1\} \otimes\{2,2\}+(-2)\{1\} \otimes\{2,1,1\}+(-1)\{0\} \otimes$ $\{3,1,1\}+(-1)\{0\} \otimes\{2,2,1\}+(-1)\{2\} \otimes\{2,2,1\}+(1)\{0\} \otimes$ $\{1,1,1\}+(0)\{1\} \otimes\{2,2,2\}+(-2)\{1\} \otimes\{3,1\}+(-1)\{2\} \otimes\{3,2\}+$ $(-1)\{2\} \otimes\{3,1,1\}+(-1)\{0\} \otimes\{3,2\}+(0)\{1\} \otimes\{3,2,1\}+(0)\{3\} \otimes$ $\{3,2,1\}+(0)\{1\} \otimes\{3,3\}+(0)\{1\} \otimes\{1,1\}+(1)\{2\} \otimes\{3,3,1\}+(1)\{2\} \otimes$ $\{3,2,2\}+(1)\{2\} \otimes\{2,1\}+(1)\{0\} \otimes\{3,3,1\}+(1)\{0\} \otimes\{3,2,2\}+$ $(1)\{0\} \otimes\{2,1\}+(-1)\{0\} \otimes\{1\}+(0)\{1\} \otimes\{3,2,1\}+(0)\{1\} \otimes\{2\}+$ $(3)\{0\} \otimes\{2,2,1\}+(2)\{1\} \otimes\{2,1,1\}+(2)\{1\} \otimes\{3,3,2\}+(2)\{1\} \otimes\{2,2\}$
$\{6,3,3,3,3\}$	2695	0	$(0)\{6\} \otimes\{0\}+(-1)\{5\} \otimes\{1,1,1\}+(-2)\{4\} \otimes\{2,2,2\}+(-3)\{3\} \otimes$ $\{3,3,3\}+(1)\{5\} \otimes\{1\}+(0)\{4\} \otimes\{2,1,1\}+(0)\{4\} \otimes\{0\}+(-1)\{3\} \otimes$ $\{3,2,2\}+(-1)\{3\} \otimes\{1,1,1\}+(-1)\{1\} \otimes\{3,2,2\}+(-1)\{1\} \otimes$ $\{1,1,1\}+(-2)\{2\} \otimes\{4,3,3\}+(-2)\{2\} \otimes\{2,2,2\}+(2)\{4\} \otimes\{2\}+$ $(1)\{3\} \otimes\{3,1,1\}+(1)\{3\} \otimes\{1\}+(1)\{1\} \otimes\{3,1,1\}+(0)\{2\} \otimes\{4,2,2\}+$ $(0)\{2\} \otimes\{2,1,1\}+(0)\{2\} \otimes\{0\}+(0)\{0\} \otimes\{2,1,1\}+(0)\{0\} \otimes\{0\}+$ $(-1)\{1\} \otimes\{5,3,3\}+(3)\{3\} \otimes\{3\}+(2)\{2\} \otimes\{4,1,1\}+(2)\{2\} \otimes\{2\}+$ $(1)\{1\} \otimes\{5,2,2\}+(1)\{1\} \otimes\{1\}+(0)\{0\} \otimes\{6,3,3\}+(0)\{0\} \otimes\{4,2,2\}$

Symmetrical Coupling of Three Angular Momenta

Jean-Marc Levy-Leblond and Monique Levy-Nahas
Laboratoire de Physique Théorique et Hautes Energies, Orsay (S. et O.), France
(Received 25 January 1965)

Abstract

We introduce here a new coupling scheme for three angular momenta. It relies on the properties of an operator which depends "democratically" upon the three individual angular momenta; this is in fact their mixed product. This operator, the total angular momentum and one of its components form a complete set of commuting observables. In the case where the three individual angular momenta are equal, the eigenstates of this set possess remarkable symmetry properties with respect to the permutation group S_{3}.

1. INTRODUCTION

T${ }^{7}$ HIS paper deals with an old problem: the quantum mechanical coupling of three angular momenta. Actually, this amounts to reducing into a sum of irreducible representations, a tensor product of three irreducible representations of the threedimensional rotation group. Such a tensor product is not a multiplicity-free representation; one can find several equivalent irreducible representations in its decomposition. It is thus necessary to introduce a degeneracy parameter which enables one to distinguish these various equivalent irreducible representations. For the physicist, the problem is to find an operator which, added to the three "individual" angular momenta, the total angular momentum and one of its components, gives a complete set of observables.

The well-known solution of this problem rests on the fact that the rotation group is "simply reducible", ${ }^{1}$ that is to say, a given irreducible representation shows up once (at most) in the reduction of the tensor product of two irreducible representations. When dealing with the tensor product of three such representations, one can then first reduce the tensor product of two among them and for each of the irreducible representations thus obtained, reduce its tensor product with the third of the initial representations. In other words, degeneracy is removed by introducing the angular momentum of a pair of the initial "systems." But this age-old solution is completely "antidemocratic," in that the three initial angular momenta are not treated on the same footing. Now, there are a lot of problems where they play the same part. This is particularly true when one has to couple three equal angular momenta. The representation space of the rotation group reppresentation is then also a representation space for

[^18]the symmetric group of the third degree. We know that, in a certain sense, we can reduce simultaneously the rotation group and the symmetric group representations. ${ }^{2}$ Unhappily, the usual coupling schemes completely obscure this point. In the case of several $\frac{1}{2}$ spins only, do we know explicitly the symmetry properties of the coupled states. ${ }^{3}$ And yet, this is a crucial problem when one has to classify the spin or isospin states of several identical particles obeying Fermi-Dirac or Bose-Einstein statistics.

We introduce here a new coupling scheme based upon a new operator with the following properties: (a) its depends "democratically" upon the individual angular momentum operators; (b) it enjoys a simple physical interpretation: indeed, it is the mixed product of the three angular momenta; (c) it is effectively able to remove the degeneracy with respect to the total angular momentum. These properties are derived in Sec. 2.

We then treat in Sec. 3 the case of three equal angular momenta. We show how to reduce completely the relevant representations of the thirddegree symmetric group. We carry on this reduction and this provides us with the symmetry properties of the basis vectors in this new coupling scheme.

In the course of our calculations we are led to derive some new properties of Wigner's $6 j$ coefficients (see Appendices A and C).

Finally, two tables exhibit the basis vectors of our coupling scheme for the case of three $j=\frac{1}{2}$ and three $j=1$ angular momenta.

2. THE NEW COUPLING SCHEME

2.1. Definitions

Let $\mathrm{J}^{1}, \mathrm{~J}^{2}, \mathrm{~J}^{3}$ be three angular momentum op-

[^19]erators. They are Hermitian operators obeying the following commutation rules:
\[

\left[J_{i}^{\alpha}, J_{i}^{\beta}\right]=i \delta^{\alpha \beta} \epsilon_{i j k} J_{k}^{\alpha}\left\{$$
\begin{array}{r}
\alpha, \beta=1,2,3 \tag{2.1}\\
i, j, k=1,2,3
\end{array}
$$\right.
\]

One defines the total angular momentum operator

$$
\begin{equation*}
\mathrm{J}=\mathrm{J}^{1}+\mathrm{J}^{2}+\mathrm{J}^{3} \tag{2.2}
\end{equation*}
$$

We introduce now the Hermitian operator

$$
\begin{equation*}
K=\epsilon_{i j k} J_{i}^{1} J_{i}^{2} J_{k}^{3} . \tag{2.3}
\end{equation*}
$$

It can be rewritten as

$$
\begin{equation*}
K=\frac{1}{6} \epsilon_{i j k} \epsilon_{\alpha \beta \gamma} J_{i}^{\alpha} J_{i}^{\beta} J_{k}^{\gamma} \tag{2.4}
\end{equation*}
$$

In spherical components, the most useful ones for explicit calculations, this reads

$$
K=-\frac{i}{2} \epsilon_{\mathfrak{p q r}} J_{\mathfrak{p}}^{1} J_{\partial}^{2} J_{r}^{3}\left\{\begin{align*}
p, q, r & =+, 0,- \tag{2.5}\\
\epsilon_{+0-} & =+1
\end{align*}\right.
$$

It is straightforward to derive the following commutation rules

$$
\begin{array}{r}
{\left[K, \mathrm{~J}^{1}\right]=i\left[\mathrm{~J}^{2}\left(\mathrm{~J}^{1} \cdot \mathrm{~J}^{3}\right)-\mathrm{J}^{3}\left(\mathrm{~J}^{2} \cdot \mathrm{~J}^{1}\right)\right]} \tag{2.6}\\
\text { and cyclically. }
\end{array}
$$

As a result,

$$
\begin{equation*}
[K, \mathrm{~J}]=0 \tag{2.7}
\end{equation*}
$$

It is then clear that the following set of operators: $\left(\mathrm{J}^{1}\right)^{2},\left(\mathrm{~J}^{2}\right)^{2},\left(\mathrm{~J}^{3}\right)^{2},(\mathrm{~J})^{2}, J_{0}$ and K form a commuting set. That this is actually a complete set of observables will be shown in the following. Let us note some rather remarkable commutation rules,

$$
\begin{array}{r}
{\left[\mathrm{J}^{1} \cdot \mathrm{~J}^{2}, \mathrm{~J}^{2} \cdot \mathrm{~J}^{3}\right]=\frac{1}{4}\left[\left(\mathrm{~J}^{1}+\mathrm{J}^{2}\right)^{2},\left(\mathrm{~J}^{2}+\mathrm{J}^{3}\right)^{2}\right]=i K} \tag{2.8}\\
\text { and cyclically }
\end{array}
$$

Also,

$$
\begin{aligned}
& {\left[K, \mathrm{~J}^{1} \cdot \mathrm{~J}^{2}\right]=} i\left\{\left(\mathrm{~J}^{1} \cdot \mathrm{~J}^{2}\right)\left(\mathrm{J}^{3} \cdot \mathrm{~J}^{1}\right)-\left(\mathrm{J}^{2} \cdot \mathrm{~J}^{3}\right)\left(\mathrm{J}^{1} \cdot \mathrm{~J}^{2}\right)\right. \\
&\left.+\left(\mathrm{J}^{2}\right)^{2}\left(\mathrm{~J}^{3} \cdot \mathrm{~J}^{1}\right)-\left(\mathrm{J}^{1}\right)^{2}\left(\mathrm{~J}^{2} \cdot \mathrm{~J}^{3}\right)\right\} \\
& \text { and cyclically. }
\end{aligned}
$$

2.2. Matrices Elements

Let us now restrict ourselves to the tensor product $\mathscr{D}^{i^{3}} \otimes \mathscr{D}^{i_{3}} \otimes D^{i_{3}}$ of three irreducible representations of the rotation group. We work from now on in the corresponding representation space. In this vector space, the individual operators $\left(\mathrm{J}^{\alpha}\right)^{2}$ reduce to multiple of the identity:

$$
\begin{equation*}
\left(\mathrm{J}^{\alpha}\right)^{2}=j_{\alpha}\left(j_{\alpha}+1\right) \mathbb{1} \tag{2.10}
\end{equation*}
$$

so we are no longer interested in them.

Our task is now to solve the simultaneous eigenvalue problem for $K,(\mathrm{~J})^{2}$, and J_{0}. Maybe, one can solve this democratic problem in a democratic way, for instance by systematically exploiting the commutation rules (2.8) and (2.9). What will be done here, instead, is to use an antidemocratic but straightforward method.

We first notice that we already know the eigenvalues of (J) ${ }^{2}$ and J_{0}. The usual coupling schemes enable us to decompose the vector space of the representation in a sum of subspaces $\mathcal{H}_{J M}$ corresponding to the eigenvalues $J(J+1)$ of $(J)^{2}$ and M of J_{0}. These subspaces have, in general, a dimension higher than one due to the fact that the \mathscr{D}^{J} representation shows up with a certain multiplicity in the reduction of the tensor product $\mathscr{D}^{i_{1}} \otimes D^{i_{2}} \otimes D^{i_{5}}$. But we know a basis in each of these subspaces, obtained by diagonalizing, say, $\left(\mathrm{J}^{1}+\mathrm{J}^{2}\right)^{2}$. This is the usual coupling scheme. Let us note $\left|j_{12} J M\right\rangle$ the corresponding normed basis vectors. They are defined by

$$
\begin{align*}
(\mathrm{J})^{2}\left|j_{12} J M\right\rangle & =J(J+1)\left|j_{12} J M\right\rangle, \\
J_{0}\left|j_{12} J M\right\rangle & =M\left|j_{12} J M\right\rangle, \tag{2.11}\\
\left(\mathrm{J}^{1}+\mathrm{J}^{2}\right)^{2}\left|j_{12} J M\right\rangle & =j_{12}\left(j_{12}+1\right)\left|j_{12} J M\right\rangle, \\
\left\langle j_{12}^{\prime} J^{\prime} M^{\prime} \mid j_{12} J M\right\rangle & =\delta_{i_{12} i^{\prime}{ }_{22} \delta_{J J^{\prime}} \delta_{M M} .},
\end{align*}
$$

We are going to study the matrix elements of K in this basis. Since K commutes with (J) ${ }^{2}$ and J_{0} we have at once

$$
\begin{align*}
\left\langle j_{12}^{\prime} J^{\prime} M^{\prime}\right| & K\left|j_{12} J M\right\rangle \\
& =\delta_{J J^{\prime}} \delta_{M M^{\prime}}\left\langle j_{12}^{\prime} J M\right| K\left|j_{12} J M\right\rangle \tag{2.12}
\end{align*}
$$

This proves it suffices to work in each subspace $\mathscr{K}_{J M}$.
Now, K is an irreducible tensor operator (a scalar one, indeed) built up with the three irreducible tensor operators J^{α}. We have thus at our disposal the standard methods of evaluation of its matrix elements. ${ }^{4}$ However, an immediate use of these methods leads to a complicated expression containing one $9 j$ and one $6 j$ symbols. A little trick simplifies the derivation and leads to an expression containing but $6 j$ symbols. The relations (2.8) reads

$$
\begin{equation*}
K=\frac{i}{4}\left[\left(\mathrm{~J}^{1}+\mathrm{J}^{2}\right)^{2},\left(\mathrm{~J}^{2}+\mathrm{J}^{3}\right)^{2}\right] \tag{2.13}
\end{equation*}
$$

whence
$\left\langle j_{12}^{\prime} J M\right| K\left|j_{12} J M\right\rangle=\frac{i}{4}\left(j_{12}^{\prime}\left(j_{12}^{\prime}+1\right)\right.$
$\left.-j_{12}\left(j_{12}+1\right)\right)\left\langle j_{12}^{\prime} J M\right|\left(\mathrm{J}^{2}+\mathrm{J}^{3}\right)^{2}\left|j_{12} J M\right\rangle$.

[^20]We evaluate the matrix elements of $\left(\mathrm{J}^{2}+\mathrm{J}^{3}\right)^{2}$ in the Appendix A. We also obtain a new sum formula for $6 j$ coefficients. We finally obtain the following most simple result:

$$
\begin{equation*}
\left\langle j_{12}^{\prime} J M\right| K\left|j_{12} J M\right\rangle=i \alpha_{l}^{J}\left(\delta_{i^{\prime}, 2, l} \delta_{i_{2}, l-1}-\delta_{i_{12, l-1}} \delta_{i_{2}, t}\right), \tag{2.15}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha_{l}^{J}=\frac{1}{4}(-1)^{i_{4}+i_{4}+i_{2}+J}\left[j_{2}\left(j_{2}+1\right)\left(2 j_{2}+1\right) j_{3}\left(j_{3}+1\right)\left(2 j_{3}+1\right)\right]^{\frac{1}{2}} \\
& \times l[(2 l-1)(2 l+1)]^{\frac{1}{2}}\left\{\begin{array}{ccc}
J & j_{3} & l \\
1 & l-1 & j_{3}
\end{array}\right\}\left\{\begin{array}{lcc}
j_{1} & j_{2} & l \\
1 & l-1 & j_{2}
\end{array}\right\} \tag{2.16}
\end{align*}
$$

or
$\alpha_{l}^{J}=\frac{1}{4}\left[\frac{\left(J+j_{3}+l+1\right)\left(J+j_{3}-l+1\right)\left(j_{3}-J+l\right)\left(J-j_{3}+l\right)\left(j_{1}+j_{2}+l+1\right)\left(j_{1}+j_{2}-l+1\right)\left(j_{2}-j_{1}+l\right)\left(j_{1}-j_{2}+l\right)}{(2 l+1)(2 l-1)}\right]^{\frac{1}{2}}$.

The K matrix then assumes the striking form

$$
K=\left[\begin{array}{ccccc}
0 & -i \alpha_{1} & & & \tag{2.18}\\
i \alpha_{1} & 0 & -i \alpha_{2} & & 0 \\
& i \alpha_{2} & 0 . & . & \\
& & \cdot & \ddots & \\
& 0 & \cdot & \cdot & 0 \\
& & & & \\
& & & -i \alpha_{n-1} & 0
\end{array}\right]
$$

2.3 Diagonalization

This is a particular Jacobi matrix, i.e., a matrix with all its nonvanishing elements along its principal diagonal and the two adjacent ones. These Jacobi matrices have many wonderful properties. ${ }^{5}$ Here, further, K is an antisymmetric matrix. We get then the following

Lemma. The eigenvalues of K in each subspace $\mathfrak{H}_{J_{M}}$ are all different from each other.
We defer the proof to the Appendix B.
We can thus assert that the eigenvalues of K are effectively able to play their parts as degeneracy parameters. This shows also that the operators $\left(\mathrm{J}^{1}\right)^{2},\left(\mathrm{~J}^{2}\right)^{2},\left(\mathrm{~J}^{3}\right)^{2},(\mathrm{~J})^{2}, J_{0}$, and K constitute a complete set of commuting observables.

But K is antisymmetric, and, denoting by $Q(\lambda)$ the characteristic polynomial of K, we have

$$
\begin{align*}
Q(\lambda) & =\operatorname{det}(K-\lambda \mathbb{1})=\operatorname{det}\left(K^{T}-\lambda \mathbb{1}\right) \\
& =\operatorname{det}(-K-\lambda \mathbb{1}) \\
& =(-1)^{n} \operatorname{det}(K+\lambda \mathbb{1})=(-1)^{n} Q(-\lambda), \tag{2.19}
\end{align*}
$$

[^21]where n is the degree of $P(\lambda)$, i.e., the dimension of the subspace $\mathfrak{K}_{J M}$ considered. The characteristic polynomial of K is then of the same parity as its degree. Combining this with the preceding Lemma, we obtain the following

Theorem. The set of the eigenvalues of K in each subspace $\mathfrak{K}_{J M}$ consists of pairs of opposite eigenvalues ($k_{r},-k_{r}$), these pairs being different from each other, plus at most a zero eigenvalue.

It seems in general impossible to compute explicitly the eigenvalues of K, the computation depending on the solution of high degree algebraic equations. This is the main drawback of our method. It can be seen that these eigenvalues generally are not rational functions of j_{1}, j_{2}, j_{3}. However, when the $\mathscr{K}_{J M}$ subspace is of low dimension, i.e., for the highest possible values of J, the computation is possible. We thus find the following eigenvalues for K :
if

$$
\begin{align*}
& \begin{array}{l}
J=j_{1}+j_{2}+j_{3}, \quad k=0 ; \\
J=j_{1}+j_{2}+j_{3}-1,
\end{array} \quad k= \pm\left[j_{1} j_{2} j_{3}\left(j_{1}+j_{2}+j_{3}\right)\right]^{\frac{1}{2}} ; \\
& J=j_{1}+j_{2}+j_{3}-2, \\
& k=0, \pm\left[4 j_{1} j_{2} j_{3}\left(j_{1}+j_{2}+j_{3}\right)\right. \tag{2.20}\\
& \\
& \quad-\quad\left(j_{1}+j_{2}+j_{3}\right)\left(j_{1} j_{2}+j_{2} j_{3}+j_{3} j_{1}\right) \\
& \\
& \left.\quad-3 j_{1} j_{2} j_{3}+\left(j_{1} j_{2}+j_{2} j_{3}+j_{3} j_{1}\right)\right]^{\frac{1}{2}} .
\end{align*}
$$

One obviously encounters the same difficulties when computing the eigenvectors of K.
From now on we denote by $\mid k J M\}$ the eigenvectors of $K,(\mathrm{~J})^{2}, J_{0}$ in order to distinguish them from the eigenvectors $\left|j_{12} J M\right\rangle$ of $\left(\mathrm{J}_{1}+\mathrm{J}_{2}\right)^{2}$, $(\mathrm{J})^{2}$ and J_{0}.

3. SYMMETRICAL COUPLING OF THREE IDENTICAL ANGULAR MOMENTA

3.1. K Eigenvectors and the Symmetric Group

The vector space $\mathrm{Fc}_{i}^{\otimes 3}$ of the representation is also a representation space for the symmetric group of degree three, $S_{3}{ }^{2}{ }^{2}$

To each permutation $\left(\begin{array}{ccc}1 & 2 & \\ i, & 2 & 8 \\ i, & i,\end{array}\right)$ corresponds an operator $P_{i_{1}, i, i}$, acting on the basis vectors $\left|m_{1} m_{2} m_{3}\right\rangle$, which are eigenstates of J_{0}^{2}, J_{0}^{2}, and J_{0}^{3}, according to

$$
\begin{equation*}
P_{i_{1}, i, 2}\left|m_{1} m_{2} m_{3}\right\rangle=\left|m_{i_{2}} m_{i,} m_{i 3}\right\rangle . \tag{3.1}
\end{equation*}
$$

These permutations induce automorphisms in the algebra of the angular momentum operators, according to

$$
\begin{equation*}
P_{i_{1} i_{2} i_{3}} \mathrm{~J}^{\alpha} P_{i_{1} i_{i} i}^{-1}=\mathrm{J}^{i \alpha} . \tag{3.2}
\end{equation*}
$$

As a consequence we have

$$
\begin{align*}
& P_{i_{x} i_{s} i_{3}} J P_{i_{i s}}^{-1}=\mathrm{J}, \tag{3.3}\\
& P_{i, i_{i} i_{3}} K P_{i_{1 i} i_{z} i_{s}}^{-1}= \pm K, \tag{3.4}
\end{align*}
$$

when the permutation is even or odd, respectively.
The permutation group S_{3} has two generators, for example the interchange permutation $P_{12}=\binom{123}{213}$ and the cyclic permutation $\mathrm{e}=\left(\begin{array}{l}233\end{array}\right)$; from now on, it will be sufficient to consider only the corresponding operators.

From (3.3) we see that the subspaces $\mathscr{F}_{J_{M}}$ are invariant under the operations of S_{3}. Therefore, it is sufficient to consider the reduction of the S_{3} representation in each of these subspaces.

But, from (3.4),

$$
\begin{equation*}
P_{12} K P_{12}^{-1}=-K, \quad \mathrm{e} K \mathrm{e}^{-1}=K \tag{3.5}
\end{equation*}
$$

which proves that (a) if $k=0$, the vector $|0 J M|$ is a basis for a one-dimensional (irreducible) representation of S_{s}; (b) if $k \neq 0$, the vectors $\left.\mid k J M\right\}$ and $\left.\mid-k_{k} J M\right\}$ for each value of $|k|$, form a basis for a two-dimensional representation of S_{3}.

Now there exist three irreducible representations of S_{3} : two are one-dimensional, the symmetrical one (which we note s) and the antisymmetrical one (a); one is two-dimensional, the "mixed" representation (IT).

We are now faced with two questions: (a) if $k=0$, does the vector $[0 J M\rangle$ belong to s or to a ? (b) if $k \neq 0$, do the vectors $\mid k J M\}$ and $\mid-k J M\}$ belong to an irreducible representation \mathfrak{M}, or to a reducible one?
(a) To answer the first question is easy. Due to the very particular form of the matrix K in the basis
$\left|j_{12} J M\right\rangle$ the vectors $\{0 J M\}$ have nonvanishing components only on those vectors $\left|j_{12} J M\right\rangle$, such that j_{12} has the same parity as the maximum (or minimum) j_{12} in the subspace $\mathcal{K}_{J_{M}}$.
For a given J, the possible values of j_{12} are

$$
\begin{array}{lll}
J-j \leq j_{12} \leq 2 j & \text { if } & J \geq j \\
J-j \leq j_{12} \leq j+J & \text { if } & J \leq j
\end{array}
$$

Now

$$
\begin{equation*}
P_{12}\left|j_{12} J M\right\rangle=(-)^{2 i-i_{12}}\left|j_{12} J M\right\rangle \tag{3.6}
\end{equation*}
$$

so that

$$
\left.\left.P_{12} \mid 0 J M\right\}=\mid 0 J M\right\} \quad \text { if } \quad J \geq j,
$$

and

$$
\begin{align*}
\left.P_{12} \mid 0 J M\right\} & \left.=(-)^{i+J} \mid 0 J M\right\} \\
\text { if } J & \leq j \text { and } j \text { is an integer. } \tag{3.7}
\end{align*}
$$

[When $J \leq j$ and both are half-integer, the $\mathfrak{K}_{J M}$ subspaces have even dimension and there are no $|0 J M|$ vectors.]
Consequently, we know whether $\mid 0 J M\}$ is symmetrical or antisymmetrical. As is well known, the "scalar" $\mid 000\}$ is symmetrical or antisymmetrical according as j is even or odd.
(b) If $k \neq 0$, after (3.5) one sees that $\left.P_{12} \mid k J M\right\} \approx$ $\mid-k J M\}$, so that P_{12} is traceless.

According to the table of the primitive characters of S_{3} (Table I), the two-dimensional representations

Table I. Primitive characters of S_{s}.

class	rep.		
	S	π	a
$1{ }^{3}$	1	2	1
12	1	0	
3	1	1	1

which have been considered, can only be \mathfrak{M} if it is irreducible, or $S+a$ if it is reducible. The eigenvalues k cannot be calculated explicitly, and thus, we are not able to say which is, in general, the situation for a given value k. The only information we get is the number of representations of type π or of type $s+a$, to be found in a given subspace $\mathscr{K}_{J M}$.

3.2. Reduction of the Symmetric Group Representation

Let us calculate the characters of the S_{3} representation which is induced in a subspace $\mathscr{K}_{J a r}$.

Table II. Characters of the representations of S_{3} in the subspaces $\mathscr{H}_{J M}$ for $J \geq j$.

	J								
class	$3 j$	$3 j-1$	$3 j-2$	$3 j-3$	$3 j-4$	$3 j-5$	$3 j-6$	\cdots	
$\mathbf{1 z}^{2}$	1	2	3	4	5	6	7	\cdots	
12	1	0	1	0	1	0	1	\cdots	
3	1	-1	0	1	-1	0	1	\cdots	

It is clear that
$\chi_{J M}(\mathbb{1})=\operatorname{dim}$ of the representation

$$
=\begin{array}{ll}
3 j-J+1 & \text { for } \quad J \geq j \tag{3.8}\\
2 J+1 & \text { for } \quad J \leq j
\end{array}
$$

On the other hand, from (3.6) and (3.7),

$$
\begin{align*}
& \chi_{J M}\left(P_{12}\right)=\sum_{i_{1}}(-)^{2 i-i_{1}} \\
& +1 \text { for } J-3 j \text { even, if } J \geq j ; \\
& =\begin{array}{ll}
0 & \text { for } J-3 j \text { odd, } \\
(-)^{J+j} & \text { for } j \text { integer, }
\end{array} \tag{3.9}\\
& \text { if } J \leq j . \\
& 0 \text { for } j \text { half integer, }
\end{align*}
$$

Finally, as concerns the cyclic permutations class, the simplest way to evaluate the character is to remark that if \mathcal{K}_{M} is a subspace of given M (whatever J is), then

$$
\mathfrak{K}_{J}=J_{-} \mathfrak{K}_{J+1}+\mathfrak{K}_{J J},
$$

with obvious notations.
Observing that J _commutes with the permutations and that $\chi_{J_{M}}$ is independent of M, we see that

$$
\kappa_{J}=\kappa_{J+1}+\chi_{J M},
$$

where κ_{J} is the character of the considered permutation in the S_{3} representation in \Re_{J}.

We can use this method for all permutations, and especially for the cyclic permutations, we get

$$
\kappa_{J}=\sum_{m_{2}+m_{2}+m_{3} \ldots J} \delta_{m_{1} m_{3}} \delta_{m_{2} m_{s}} \delta_{m_{3} m_{1}}=\delta_{J, 3 i},
$$

where l and j (and J) are integer or half-integer.
And finally,

$$
\begin{equation*}
\chi_{J M}(\mathrm{C})=\delta_{J, 3 l}-\delta_{J+1,3 l} . \tag{3.10}
\end{equation*}
$$

So we have the complete table of characters. We give it for $J \geq j$ (Table II).
It is then easy, using the ordinary orthogonality relations for the primitive characters, to obtain the complete reduction of the S_{3} representation in each subspace $\mathscr{F e}_{J M}$. Table III gives the results of this reduction.

We recover the symmetry of the vectors of type $\mid 0 J M\}$, which we already obtained in (3.7), and we recover also the fact that, except for the corresponding s or a representation, we only have representations of type \mathfrak{N} or $\mathcal{S}+a$.

These results provide useful information for some $6 j$ coefficients connected with the matrix elements of the S_{3} representations in the subspace $\mathscr{H}_{J M}$ (see Appendix C).

Let us remark finally that the change of basis

$$
\left.\left.\left.\mid k_{ \pm} J M\right\}=(1 / \sqrt{2})[\mid k J M\} \pm \mid-k J M\right\}\right]
$$

enables one to (a) reduce explicitly the representations of type $\mathcal{S}+\mathfrak{Q}$ (i.e., the vectors $\left\{k_{ \pm} J M\right\}$ are completely symmetrical or completely antisymmetrical); (b) to put into real form the irreducible representations of type 97 .

4. EXAMPLES

In the following tables, we give the components of the vectors $\mid k J M\}$ in the basis $\left|m_{1} m_{2} m_{3}\right\rangle$ for the cases

Table III. Irreducible representations content of the S_{3} representations in the subspaces $\mathscr{C}_{J_{M}}$.

$J \geq j(l$ an integer $)$	
$J=3 j-6 l$	$s+l(s+a)+2 l \mathfrak{N}$
$J=3 j-6 l-1$	$l(S+Q)+(2 l+1) 9 \%$
$J=3 j-6 l-2$	($S^{+}+l(S+a)+(2 l+1) 9 \mathrm{~m}$
$J=3 j-6 l-3$	$(l+1)(S+a)+(2 l+1) 9 \pi$
$J=3 j-6 l-4$	$(s+l(S+Q)+(2 l+2) \cdots$
$J=3 j-6 l-5$	$(l+1)(S+a)+(2 l+2) \mathfrak{M}$

$J \leq j, j$ integer; [l an integer, and $\Omega=S$ (resp. $Q)$ if j and J have the same parity (resp. opposite parity)]

$$
\begin{array}{ll}
J=3 l & Q+l(S+a)+2 l \mathfrak{M} \\
J=3 l+1 & Q+l(S+Q)+(2 l+1) \mathfrak{M} \\
J=3 l+2 & Q+l(S+Q)+(2 l+2) \mathfrak{M}
\end{array}
$$

$J \leq j, j$ half-integer; (l half-integer)

$$
\begin{array}{ll}
J=3 l & \left(l+\frac{1}{2}\right)(S+a)+2 l \mathfrak{M} \\
J=3 l+1 & \left(l+\frac{1}{2}\right)(S+a)+(2 l+1) \mathfrak{M} \\
J=3 l+2 & \left(l+\frac{1}{2}\right)(S+a)+(2 l+2) \mathfrak{M}
\end{array}
$$

Table IV. Case $j_{1}=j_{2}=j_{3}=\frac{1}{2}$, where $\omega=\exp \left(\frac{2}{3} i \pi\right)$.

$$
\begin{array}{ll}
j_{1}=j_{2}=j_{3}=\frac{1}{2} & (\text { Table IV) } \\
j_{1}=j_{2}=j_{3}=1 & (\text { Table } V)
\end{array}
$$

Observe that for these values of j, the dimensions of the subspaces $\mathfrak{H}_{J M}$ are always lower than three, so that the reducible representations $\mathcal{S}+\mathbb{a}$ do not appear. This only occurs for $j \geq \frac{3}{2}$.

We obtain the coefficients corresponding to $M<0$ by noticing that

$$
\begin{aligned}
\left\{k J-M \mid-m_{1}\right. & \left.-m_{2}-m_{3}\right\rangle \\
& =(-)^{i_{1}+i_{2}+i_{3}-J}\left\{k J M\left|m_{1} m_{2} m_{3}\right\rangle .\right.
\end{aligned}
$$

In this particular case, we notice that the states of the type
$\left.\left.\left.\left\lvert\, \sqrt{3} \pm, \frac{1}{2}\right., m\right\}=(1 / \sqrt{2})\left[\mid \sqrt{3}, \frac{1}{2}, m\right\} \pm \mid-\sqrt{3}, \frac{1}{2}, m\right\}\right]$
are nothing else but the basis states which correspond to the usual coupling $\left|j_{12}, \frac{1}{2}, m\right\rangle$ for $j_{12}=1,0$. This comes from the following fact: the subspaces $J=\frac{1}{2}, M= \pm \frac{1}{2}$ are two-dimensional and, in each of these subspaces, the induced S_{3} representation is irreducible, which is already true with the usual way of coupling.

5. CONCLUSION

We have shown that a new coupling scheme for three angular momenta is obtained by diagonalizing the K operator. In this scheme, the individual angular momenta are treated alike. As a consequence, when these are equal, the eigenvectors of K and the total angular momentum belong to subspaces which are irreducible with respect to the representations of the symmetric group S_{3}. These eigenvectors have thus simple symmetry properties. These should be useful when one deals with spin or isospin states for three bosons ${ }^{6}$ or three fermions.
(This work was practically completed when we learned that Dr. Chakrabarti had simultaneously obtained similar results. ${ }^{7}$)

[^22]
ACKNOWLEDGMENTS

We thank F. Lurçat for the interest he took in this work and for many useful remarks and H. Goldberg who carefully read the manuscript.

APPENDIX A

We want to evaluate the matrix element

$$
\begin{equation*}
\left\langle j_{12}^{\prime} J M\right|\left(\mathrm{J}_{2}+\mathrm{J}_{3}\right)^{2}\left|j_{12} J M\right\rangle \tag{A1}
\end{equation*}
$$

This reduces immediately to

$$
\begin{align*}
& {\left[j_{2}\left(j_{2}+1\right)+j_{3}\left(j_{3}+1\right)\right] \delta_{i_{12}, i_{12}}} \\
& \tag{A2}\\
& +2\left\langle j_{12}^{\prime} J M\right| \mathrm{J}_{2} \cdot \mathrm{~J}_{3}\left|j_{12} J M\right\rangle
\end{align*}
$$

But $\mathrm{J}_{2} \cdot \mathrm{~J}_{3}$ is the scalar product of two irreducible tensor operators operating respectively on the (1-2) and (3) parts of the system. Standard methods ${ }^{4}$ show that

$$
\begin{array}{r}
\left\langle j_{12}^{\prime} J M\right| \mathrm{J}_{2} \cdot \mathrm{~J}_{3}\left|j_{12} J M\right\rangle=(-1)^{i_{12}+i_{3}+J}\left\{\begin{array}{lll}
J & j_{3} & j_{12}^{\prime} \\
1 & j_{12} & j_{3}
\end{array}\right\} \\
\times\left(j_{12}^{\prime}\left\|J_{2}\right\| j_{12}\right)\left(j_{3}\left\|J_{3}\right\| j_{3}\right) . \tag{A3}
\end{array}
$$

The reduced matrix element ($j_{12}^{\prime}\left\|J_{2}\right\| j_{12}$) can be evaluated by similar methods:

$$
\begin{align*}
\left(j_{12}^{\prime}\left\|J_{2}\right\| j_{12}\right)= & (-1)^{i_{1}+i_{2}+i^{\prime}{ }_{13}+1}\left[\left(2 j_{12}+1\right)\left(2 j_{12}^{\prime}+1\right)\right]^{\frac{1}{3}} \\
& \times\left\{\begin{array}{ccc}
j_{1} & j_{2} & j_{12}^{\prime} \\
1 & j_{12} & j_{2}
\end{array}\right\}\left(j_{2}\left\|J_{2}\right\| j_{2}\right) . \tag{A4}
\end{align*}
$$

Finally, since

$$
\begin{equation*}
(j\|J\| j)=[j(j+1)(2 j+1)]^{\frac{1}{2}} \tag{A5}
\end{equation*}
$$

we obtain

$$
\begin{align*}
& \left\langle j_{12}^{\prime} J M\right| \mathrm{J}_{2} \cdot \mathrm{~J}_{3}\left|j_{12} J M\right\rangle=(-1)^{i_{2}+i_{2}+i_{9}+i_{2}+i^{\prime}{ }_{2}+J+1} \\
& \quad \times\left[j_{2}\left(j_{2}+1\right)\left(2 j_{2}+1\right) j_{3}\left(j_{3}+1\right)\left(2 j_{3}+1\right)\right]^{\frac{1}{1}} \\
& \quad \times\left[\left(2 j_{12}+1\right)\left(2 j_{12}^{\prime}+1\right)\right]^{\frac{1}{2}} \\
& \left.\quad \times\left\{\begin{array}{ccc}
J & j_{3} & j_{12}^{\prime} \\
1 & j_{12} & j_{3}
\end{array}\right\} \begin{array}{lll}
j_{1} & j_{2} & j_{12}^{\prime} \\
1 & j_{12} & j_{2}
\end{array}\right\} . \tag{A6}
\end{align*}
$$

This matrix element is nonvanishing if and only if the selection rule

$$
\begin{equation*}
\left|j_{12}^{\prime}-j_{12}\right| \leq 1 \tag{A7}
\end{equation*}
$$

is satisfied. We could have evaluated the matrix elements of $\left(\mathrm{J}_{2}+\mathrm{J}_{3}\right)^{2}$ in the basis $\left|j_{23} J M\right\rangle$, and

Table V. Case $j_{1}=j_{2}=j_{3}=1$.

then transform back to the basis $\left\langle j_{12} J M\right\rangle$. Such a method gives the formula

$$
\begin{align*}
& \left\langle j_{12}^{\prime} J M\right|\left(\mathrm{J}_{2}+\mathrm{J}_{3}\right)^{2}\left|j_{12} J M\right\rangle \\
& =\left[\left(2 j_{12}+1\right)\left(2 j_{12}^{\prime}+1\right)\right]^{\frac{1}{2}} \sum_{i=2} j_{23}\left(j_{23}+1\right)\left(2 j_{23}+1\right) \\
& \quad \times\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12} \\
j_{3} & J & j_{23}
\end{array}\right\}\left\{\begin{array}{lll}
j_{1} & j_{2} & j_{12}^{\prime} \\
j_{3} & J & j_{23}
\end{array}\right\} . \tag{A8}
\end{align*}
$$

The preceding computations furnish us with the value of this sum.

APPENDIX B

Lemma. In each subspace $\mathscr{H}_{J_{X}}$, the eigenvalues of K are different from each other

Proof. ${ }^{5}$ It depends only on K being a Jacobi matrix. Let $P_{i}(\lambda), j=1, \cdots, n$, be the principal minors of the matrix $-K+\lambda \mathbb{1}$,
$P_{i}(\lambda)=\operatorname{det}\left[\begin{array}{cccccc}\lambda & i \alpha_{1} & & & \\ -i \alpha_{1} & \lambda & i \alpha_{2} & & 0 \\ & -i \alpha_{2} & \lambda & \ddots & \\ & 0 & \ddots & \ddots & \\ & & & \ddots & i \alpha_{i-1} \\ & & & & -i \alpha_{j-1} & \lambda\end{array}\right]$.
We get at once the following recursion formula:

$$
\begin{equation*}
P_{i}(\lambda)=\lambda P_{i-1}(\lambda)-\alpha_{j-1}^{2} P_{i-2}(\lambda) \tag{B2}
\end{equation*}
$$

with

$$
\begin{equation*}
P_{0}=1, \quad P_{1}=\lambda \tag{B2'}
\end{equation*}
$$

so that

$$
P_{2}=\lambda^{2}-\alpha_{1}^{2}, \text { etc. }
$$

Two successive polynomials P_{i-1} and P_{i} cannot have a common root. If they had, after (B2) and since $\alpha_{i-1} \neq 0$ (See 2.17), this common root would also be a root of $P_{i-2} \cdots$, then of P_{0}, which is impossible. We show now that the roots $\lambda_{k}^{(i)}$ of P_{i} strictly separate the roots $\lambda_{k}^{(i+1)}$ of P_{i+1}, i.e.,

$$
\begin{align*}
& -\infty<\lambda_{1}^{(i+1)}<\lambda_{1}^{(i)}<\lambda_{2}^{(i+1)} \\
& <\lambda_{2}^{(j)} \cdots<\lambda_{i}^{(i+1)}<\lambda_{i}^{(i)}<\lambda_{j+1}^{(i+1)}<+\infty . \tag{B3}
\end{align*}
$$

This is obviously true for P_{1} and P_{2}. Suppose it to be true for P_{i} and P_{i-1},

$$
\begin{align*}
-\infty & <\lambda_{1}^{(i)}<\lambda_{1}^{(i-1)} \\
& <\lambda_{1}^{(i)} \cdots<\lambda_{i-1}^{(i)}<\lambda_{i}^{(i-1)}<\lambda_{i}^{(i)}<+\infty \tag{B3'}
\end{align*}
$$

But, after (B2),

$$
\begin{align*}
P_{i+1}(\lambda)= & \lambda\left(\lambda-\lambda_{1}^{(i)}\right) \cdots\left(\lambda-\lambda_{i}^{(i)}\right) \\
& -\alpha_{i}^{2}\left(\lambda-\lambda_{1}^{(i-1)}\right) \cdots\left(\lambda-\lambda_{i-1}^{(i-1)}\right) . \tag{B4}
\end{align*}
$$

Then
$P_{i+1}\left(\lambda_{k}^{(i)}\right)=-\alpha_{i}^{2}\left(\lambda_{k}^{(i)}-\lambda_{1}^{(i-1)}\right) \cdots\left(\lambda_{k}^{(i)}-\lambda_{i-1}^{(i-1)}\right)$.

After the hypothesis (B. $\left.3^{\prime}\right), P_{i+1}\left(\lambda_{k}^{(i)}\right)$ is of sign $(-1)^{i+k+1} \cdot P_{i+1}(\lambda)$ modify its sign between $\lambda=\lambda_{k}^{(i)}$ and $\lambda=\lambda_{k+1}^{(i)}$. There is thus at least one root of P_{i+1} between two successive roots of P_{i}. But, on the other hand, for λ positive great enough $P_{i+1}(\lambda)$ is certainly positive although $P_{i+1}\left(\lambda_{i}^{(i)}\right)<0$. So, there is a root of P_{i+1} greater than $\lambda_{i}^{(j)}$. In the same way, one shows there is a root of P_{i+1} smaller than $\lambda_{1}^{(i)}$. But P_{i+1} cannot have more than $(j+1)$ roots. We have then proved the inequalities (B.3). In particular, all the roots of any given P_{j} are different from each other. This is true in particular for $j=n$, that is for the characteristic polynomial of $(-k+\lambda 1)$.

APPENDIX C

We have seen that, when dealing with three equal angular momenta j, each of the subspaces $\mathcal{F}_{J_{M}}$ is a representation space for a representation of the symmetric group S_{3}. It is easy to derive explicitly the matrices corresponding to each element of S_{3} in this representation. Their matrix elements are $6 j$-symbols. We introduce the matrices L, M, N with the following definitions:

$$
\left.\begin{array}{rl}
L_{k l} & =(-1)^{k} \delta_{k l}, \\
M_{k l} & =[(2 k+1)(2 l+1)]^{\frac{1}{i}}\left\{\begin{array}{lll}
i & j & k \\
j
\end{array}\right\} \\
N_{k l} & =(-1)^{k}[(2 k+1)(2 l+1)]^{\frac{1}{i}}\left\{\begin{array}{l}
j \\
i
\end{array} j^{k}\right. \tag{C3}\\
i
\end{array}\right\} .
$$

These matrices are orthogonal and possess some remarkable properties (due to those of the $6 j$ symbols):

$$
\begin{gather*}
M M^{T}=\mathbb{1}, \quad M=M^{T} \\
\text { or } \quad M=M^{T}=M^{-1}, \quad M^{2}=\mathbb{1} \tag{C4}\\
\quad N N^{T}=\mathbb{1}, \quad N^{2}=N^{T} \\
\text { or } \quad N^{2}=N^{T}=N^{-1}, \quad N^{3}=\mathbb{1} \tag{C5}
\end{gather*}
$$

and
$M N=N L, \quad N=L M, \quad N M=L$, etc \cdots. (C6)
The elements $\left(1, \mathscr{P}_{12}, \mathscr{P}_{23}, \mathscr{P}_{31}, \mathfrak{C}, \mathfrak{C}^{2}\right)$ of S_{3} are, respectively, represented by the matrices ($\mathbb{1}, L, N L$, M, N, N^{2}). We can use the relations (C4), (C5),
(C6), to verify the group law. But since we have reduced the above representation into irreducible components, we can derive some results about the matrices M and N. At first, since M belongs to the conjugation class of the transpositions as do L, M and L have the same eigenvalues. Actually, the relation
or

$$
\begin{align*}
M N & =N L \tag{C7}\\
\sum_{i} M_{i j} N_{i k} & =(-1)^{k} N_{i k}
\end{align*}
$$

shows that M has eigenvalues $(-1)^{k}$ with the k th column of N as eigenvector. This is a known result. ${ }^{8}$

What is more interesting is the computation of the eigenvalues of N. Due to the fact that N is

[^23]real with $N^{3}=\mathbb{1}$, these eigenvalues consist of 1 with multiplicity $a, \omega\left(=e^{i i \pi}\right)$ and ω^{2} with the same multiplicity b. Naturally,

$a+2 b=\operatorname{dim} N=\begin{array}{ll}3 j-J+1 & \text { for } J \geq j, \\ 2 J+1 & \text { for } J \leq j .\end{array}$ (C8)
But on the other hand we have already evaluated the character of the class to which N belongs. [See (3.10)]. Thus
$\operatorname{Tr} N=a-b$
$= \begin{cases}+1 \\ 0 & \text { for } J \text { of the form } 3 l+1 \\ -1 & 3 l+2\end{cases}$
Combining (C8) and (C9), one gets a and b.
Other properties can be obtained in the same way.

On the Possibility of Relating Internal Symmetries and Lorentz Invariance*

Claude Itzyison \dagger
Stanford Linear Accelerator Center, Stanford University, Stanford, California

(Received 11 January 1965)

Abstract

In this note we investigate the possibility that the inhomogeneous Lorentz group is only a subgroup of a larger Lie group G of symmetries for strong interaction physics. The discussion is restricted to the Lie algebra $\&$ of G. We make the assumption that the remaining generators A_{i} of G commute with the generators of translations P^{λ} which build the ideal \mathfrak{J} in \mathcal{L}. It is then shown that the A_{i} generate an ideal in $\mathfrak{\&}$ modulo \mathfrak{J}. If this ideal is semi-simple then $\mathfrak{\&}$ breaks up in a direct sum $\mathscr{L}=\mathscr{P} \oplus a$, where \mathcal{P} is isomorphic with the Lie algebra of the inhomogeneous Lorentz group and \mathbb{a} is semisimple.

1. INTRODUCTION

IT is interesting to discuss the various possibilities of mixing "internal symmetries" in strong interaction physics with Lorentz invariance. However, this cannot be done in an arbitrary way as was recently shown by McGlinn. ${ }^{1}$ We take here a point of view closely related to McGlinn's, by assuming that the inhomogeneous Lorentz group is only a subgroup of a larger Lie group G. This is not the only possibility as pointed out by Michel ${ }^{2}$ who assumes the inhomogeneous Lorentz group to be only a factor group of G. However, we do not discuss here these other ways of interrelating internal symmetries and Lorentz invariance. In fact we restrict our discussion to the Lie algebra of G, call it $\mathfrak{\&}$. Our main hypothesis will be that it is possible to choose a basis of this algebra in such a way that:
(i) The generators of the usual translations P^{λ}, $0 \leq \lambda \leq 3$ and homogeneous Lorentz transformations $M_{\mu \nu}=-M_{\nu \mu}, \mu, \nu=0,1,2,3$ have their usual commutation relations (this being another way of describing the fact that the inhomogeneous Lorentz group is a subgroup of G);
(ii) The other generators $A_{i} 1 \leq i \leq n$ commute with P^{λ}. This assures that any irreducible representation of our group G will be characterized by a common mass so that we do not expect the relation of internal symmetries to Lorentz invariance to account for the actual mass splitting within the same supermultiplet. Had we only assumed $\left[A_{i}, P^{0}\right]=0$, then Lorentz covariance would require it to be true in any frame so that $\left[A_{i}, P^{\lambda}\right]=0$ whatever the index λ. Now we will show the following:

[^24]Theorem: Under assumptions (i) and (ii), the P^{λ} generate an ideal J in \mathcal{L}. The images of the A_{i} under the application $\mathfrak{L} \rightarrow \mathscr{L} / \mathfrak{J}=\mathfrak{L}^{\prime}$ generate an ideal \mathbb{a}^{\prime} in \mathscr{L}^{\prime}. If we assume that this algebra \mathbb{a}^{\prime} is semisimple, then $£$ is equal to a direct sum of Lie algebras $\mathcal{L}=\mathbb{Q} \oplus \mathcal{P}$, where \mathbb{Q} is isomorphic to \mathbb{Q}^{\prime} and \mathcal{P} is isomorphic to the usual Lie algebra of the inhomogeneous Lorentz group.
This result is in some sense parallel to the one of McGlinn's. The essential difference being here that in order to split \& into this direct sum one may have to change the labels of the operators. Before proving the theorem in Sec. 4, we recall in Sec. 2 some definitions about Lie algebras and devote Sec. 3 to the proof of two lemmas which will clear the way. Section 5 gives some comments on our result.

For convenience we choose all our Lie algebras to be on the real numbers. In this way P^{λ} and $M_{\mu \nu}$ have the commutation relations of $\partial / \partial x_{\lambda}$ and $x_{\mu} \partial / \partial x^{\nu}-$ $x_{\nu} \partial / \partial x^{\nu}$, respectively. The Greek indices will always run from 0 to $3 ; g_{\mu \nu}=g^{\mu \nu}$ is the usual diagonal real Lorentz metric. We use freely of $g_{\mu \nu}$ to raise or lower indices. ${ }^{3}$

2. DEFINITIONS

To make our language precise, we recall briefly some facts about Lie algebras. For details one can refer for instance to Helgasson's book. ${ }^{4}$ By Lie algebra \mathcal{L} over R, the real numbers, we mean a finite dimensional vector space over R with an internal bilinear product satisfying $[x, x]=0$ and the Jacobi identity

$$
[x,[y, z]]+[y,[z, x]]+[z,[x, y]]=0
$$

[^25]A subalgebra of $\mathfrak{\&}$ is a vector subspace closed under the product. An ideal is a true vector subspace $\mathfrak{G} \subset \mathscr{L}$ such that for any $l \in \mathscr{L}$ and $i \in \mathscr{g},[l, i]$ belongs to \mathfrak{G}. The factor algebra $\mathscr{L} / \mathscr{G}$ is the factor vector space with the inner product inherited from \mathfrak{L}. We shall say that a Lie algebra \mathcal{L} is a direct sum of two ideals \mathscr{L}_{1} and \mathscr{L}_{2} and write $\mathscr{L}=\mathscr{L}_{1} \oplus \mathscr{L}_{2}$ if $\left[l_{1}, l_{2}\right]=0$, $\left[l_{1}^{\prime}, l_{1}^{\prime \prime}\right]=\in \mathscr{L}_{1},\left[l_{2}^{\prime}, l_{2}^{\prime \prime}\right] \in \mathscr{L}_{2}, l_{1}, l_{1}^{\prime}, l_{1}^{\prime \prime} \in \mathscr{L}_{1}, l_{2}, l_{2}^{\prime}, l_{2}^{\prime \prime} \in$ \mathscr{L}_{2} and if any element l in \mathcal{L} can be uniquely written as $l=l_{1}+l_{2}$. Mathematicians often call \mathcal{L} the direct product of \mathscr{L}_{1} and \mathscr{L}_{2}.

Given $l \in \mathcal{L}$ the linear correspondence $x \rightarrow$ $[l, x]=\operatorname{adj}(l) \cdot x$ has the property adj $l^{\prime} \operatorname{adj} l^{\prime \prime}-$ adj $l^{\prime \prime}$ adj $l^{\prime}=\operatorname{adj}\left[l^{\prime}, l^{\prime \prime}\right]$ and defines the adjoint representation of $\mathcal{L}: \operatorname{adj}(\mathcal{L})$. If the symmetric bilinear form $K\left(l_{1}^{\prime}, l^{\prime \prime}\right)=$ Trace adj l^{\prime} adj $l^{\prime \prime}$ is nondegenerate, the Lie algebra is called semisimple. In this case \& has no Abelian ideal except zero, and its center is also zero. Finally, by derivation on a Lie algebra one means a linear correspondence $x \rightarrow D x$ with the property

$$
D[x, y]=[D x, y]+[x, D y]
$$

These derivations themselves build up a Lie algebra $\mathscr{D}(\mathcal{L})$, with $\left[D^{\prime}, D^{\prime \prime}\right]=D^{\prime} D^{\prime \prime}-D^{\prime \prime} D^{\prime}$. It is easy to see that the adj (\mathscr{L}) is an ideal in $\mathscr{D}(\mathscr{L})$ (in this respect adj l is also called an inner derivation of \mathscr{L}) with

$$
[D, \operatorname{adj} l]=\operatorname{adj} D(l)
$$

Now the main result we shall use is the following.
Theorem: For a semisimple Lie algebra every derivation is an inner derivation. In other words, $\mathcal{D}(\mathcal{L})=$ adj (\mathfrak{L}). The proof of this theorem is given on p. 122 of Ref. 4.

3. TWO LEMMAS

In this section we prove the following two lemmas:
Lemma 1: Suppose that we have a Lie algebra over R and that, in terms of a basis $P^{\lambda}, N_{\mu \nu}$, the following commutation relations hold:

$$
\begin{gather*}
{\left[P^{\lambda}, P^{\rho}\right]=0, \quad\left[P^{\lambda}, N_{\mu \nu}\right]=\delta_{\mu}^{\lambda} P_{\nu}-\delta_{\nu}^{\lambda} P_{\mu}} \tag{1}\\
{\left[N_{\mu_{1} \nu_{1}}, N_{\mu_{2} \nu_{2}}\right]=g_{\mu_{1} \nu_{2}} N_{\nu_{1} \mu_{2}}+g_{\nu_{1} \mu_{2}} N_{\mu_{1} \nu_{2}}} \\
-g_{\mu_{1} \mu_{2}} N_{\nu_{1} \nu_{2}}-g_{\nu_{1} \nu ;} N_{\mu_{1} \mu_{2}} \\
+a_{\mu_{1} \nu_{1}, \mu_{2} \nu_{3}, \lambda} P^{\lambda} \\
N_{\mu \nu}=-N_{\nu_{\mu}}
\end{gather*}
$$

and

$$
\begin{align*}
a_{\mu_{1} \nu_{1}, \mu_{2} \nu_{2}, \lambda} & =-a_{p_{1} \mu_{1}, \mu_{2} \nu_{p}, \lambda} \\
& =-a_{\mu_{1} \nu_{1}, \nu_{2} \mu_{2}, \lambda}=-a_{\mu_{2} \nu_{2}, \mu_{2} \nu_{1}, \lambda} . \tag{2}
\end{align*}
$$

Then the Lie algebra just described is necessarily isomorphic to the one of the inhomogeneous Lorentz group.

Proof of Lemma 1^{5} : The statement of the lemma can be rephrased in the following way. There exists a set of (real) coefficients $f_{\mu r, \lambda}$ such that putting $L_{\mu \nu}$ equal to $N_{\mu \nu}-f_{\mu \nu, \lambda} P^{\lambda}$, the $L_{\mu \nu}$ and P^{λ} generate the same Lie algebra as before; however, these new operators have among them the usual commutation relations of the generators of homogeneous Lorentz transformations and translations, respectively, that is, this change of basis has the virtue of suppressing the " a " coefficients in the commutation relations (1) when they are written in terms of P^{λ} and $L_{\mu \nu}$.

We have to make sure that our Lie algebra satisfies the Jacobi identities:

$$
\sum_{\text {oi reular permutation of } 1,2,3}\left[N_{\mu_{1}, r},\left[N_{\mu_{2}, r_{2}}, N_{\mu_{8}, ~},\right]\right]=0 .
$$

This gives us a set of linear relations among the coefficients $a_{\mu 12, \nu_{2}, \ldots, \lambda}$:

$$
\begin{align*}
& \quad \sum_{\substack{\text { circular permutation } \\
\text { of } 1,2,3}}\left(g_{\mu_{2} \nu_{3}} a_{\mu_{1} \nu_{1}, \nu_{2} \mu_{3}, \lambda}+g_{\nu_{2} \mu_{3}} a_{\mu_{1} \nu_{1}, \mu_{g} \nu_{3}, \lambda}\right. \\
& -g_{\nu_{2} \nu_{3}} a_{\mu_{2} \nu_{1}, \mu_{2} \mu_{3}, \lambda}-g_{\mu_{2} \mu_{3}} a_{\mu_{1} \nu_{1}, \nu_{3} \nu_{3}, \lambda} \\
& \left.+g_{\mu_{1} \lambda} a_{\mu_{2} \nu_{2}, \mu_{3} \nu_{2}, \nu_{1}}-g_{\nu_{1} \lambda} a_{\mu_{2} \nu_{2}, \mu_{3} \nu_{3}, \mu_{1}}\right)=0
\end{align*}
$$

Our task now is to find the most general solution of these equations. Let $\alpha, \beta, \gamma, \delta$ stand for $0,1,2,3$ in any order. Because of the symmetry properties of the a 's, we have only to compute the following quantities:

$$
a_{\alpha \beta, \alpha \gamma, \delta} ; \quad a_{\alpha \beta, \gamma \delta, \delta} ; \quad a_{\alpha \beta, \alpha \gamma, \alpha} ; \quad a_{\alpha \beta, \beta \gamma, \gamma}
$$

The value of all $a_{\mu_{1} \nu_{1}, \mu_{2} v, \lambda}$ is then related to the preceding ones using (2). Let us first write (3) for $\mu_{1}=\alpha, \nu_{1}=\gamma, \mu_{2}=\beta, \nu_{2}=\delta, \mu_{3}=\alpha, \nu_{3}=\beta$, and $\lambda=\alpha:$

$$
\begin{align*}
g_{\alpha \alpha}\left(a_{\beta \delta, \alpha \beta, \gamma}+a_{\alpha \gamma, \beta \delta, \beta}-\right. & \left.a_{\beta \delta, \beta \gamma, \alpha}\right) \\
& +g_{\beta \beta} a_{\alpha \gamma, \delta \alpha, \alpha}=0 \tag{4}
\end{align*}
$$

Now we put in (3) $\mu_{1}=\alpha, \nu_{1}=\beta, \mu_{2}=\alpha, \nu_{2}=\gamma, \mu_{3}=$ $\alpha, \nu_{3}=\delta, \lambda=\beta$:

$$
\begin{align*}
\left(g_{\alpha \alpha} a_{\alpha \beta, \nu \delta, \beta}+a_{\alpha \gamma, \delta \beta, \beta}+\right. & \left.a_{\alpha \delta, \beta \gamma, \beta}\right) \\
& +g_{\beta \beta} a_{\alpha \gamma, \alpha \delta, \alpha}=0 \tag{5}
\end{align*}
$$

[^26]Let us add (4) and (5):

$$
\begin{equation*}
a_{\beta \delta, \alpha \beta, \gamma}+a_{\delta \alpha, \gamma \beta, \beta}=a_{\beta \gamma, \delta \beta, \alpha}+a_{\gamma \delta, \alpha \beta, \beta} . \tag{6}
\end{equation*}
$$

Call

$$
\varphi_{\delta \alpha \gamma}^{\beta}=a_{\beta \delta, \alpha \beta,}+a_{\delta \alpha, \gamma \beta, \beta} .
$$

Obviously,

$$
\varphi^{\beta}{ }_{\delta \alpha \gamma}=-\varphi_{\alpha \delta \gamma}^{\beta} .
$$

Equation (6) when translated in terms of φ reads

$$
\varphi^{\beta}{ }_{\partial \alpha \gamma}=\varphi_{\gamma \delta \alpha}^{\beta} .
$$

Hence, $\varphi^{\alpha}{ }_{\beta \gamma \delta}$ is invariant by a circular permutation of $\beta \gamma \delta$ and changes sign under an odd permutation. We will get a new equation for φ if we write (3) with $\mu_{1}=\alpha, \nu_{1}=\beta, \mu_{2}=\alpha, \nu_{2}=\gamma, \mu_{3}=\alpha, \nu_{3}=\delta$, and $\lambda=\alpha ;$

$$
\begin{align*}
a_{\alpha \gamma, \alpha \delta, \beta}+a_{\alpha \delta, \alpha \beta, \gamma} & +a_{\alpha \beta, \alpha \gamma, \delta}-a_{\alpha \beta, \gamma \delta, \alpha} \\
& -a_{\alpha \gamma, \delta \beta, \alpha}-a_{\alpha \delta, \beta \gamma, \alpha}=0 . \tag{8}
\end{align*}
$$

Using φ just defined we rewrite (8) as

$$
\begin{equation*}
\varphi^{\alpha}{ }_{\partial \gamma \beta}+\varphi_{\beta \delta \gamma}^{\alpha}+\varphi_{\gamma \beta \delta}^{\alpha}=0 . \tag{9}
\end{equation*}
$$

Comparing Eqs. (7") and (9), we conclude that all three terms in Eq. (9) are equal, and thus, $\varphi^{\alpha}{ }_{\beta \gamma \delta}=0$ that means

$$
\begin{equation*}
a_{\alpha \beta, \gamma \alpha, \delta}+a_{\beta \gamma, \delta \alpha, \alpha}=0 \tag{10}
\end{equation*}
$$

We now define $f_{\alpha \beta, \gamma}$ through the following equation (δ being known as soon as we have made a definite choice for $\alpha \beta$ and γ):
$a_{\alpha \beta, \gamma \delta, \delta}=g_{\delta \delta} f_{\alpha \beta, \gamma}$ with $f_{\alpha \beta, \gamma}=-f_{\beta \alpha, \gamma}$.
With the help of (10) we find

$$
\begin{equation*}
a_{\alpha \beta, \alpha \gamma, \delta}=g_{\alpha \alpha} f_{\beta \gamma, \delta} \tag{12}
\end{equation*}
$$

Using (4) we also get

$$
\begin{equation*}
a_{\alpha \beta, \alpha \gamma, \alpha}=g_{\alpha \alpha}\left(f_{\beta \gamma, \alpha}+f_{\alpha \gamma, \beta}-f_{\alpha \beta, \gamma}\right) . \tag{13}
\end{equation*}
$$

So far we have only introduced $f_{\mu \nu, \rho}$ for $\mu \neq \nu \neq \rho$ with the property of being antisymmetric with respect to its first two indices. We were able to express in terms of these quantities our first three sets of unknowns. We turn now to the last set. For that purpose we write again (3) with $\mu_{1}=\alpha, \nu_{1}=\beta, \mu_{2}=$ $\alpha, \nu_{2}=\gamma, \mu_{3}=\beta, \nu_{3}=\gamma$, and $\lambda=\alpha$. Using also (2) we get

$$
\begin{equation*}
a_{\alpha \gamma, \beta \gamma, \beta}=-a_{\alpha \beta, \gamma \beta, \gamma} . \tag{14}
\end{equation*}
$$

We make a final use of (3) by setting $\mu_{1}=\alpha, \nu_{1}=$ $\beta, \mu_{2}=\gamma, \nu_{2}=\delta, \mu_{3}=\alpha, \nu_{3}=\gamma$, and $\lambda=\beta$:
$-g_{\beta \beta} a_{\gamma \delta, \alpha \gamma, \alpha}+g_{\gamma \gamma} a_{\alpha \beta, \delta \alpha, \beta}-g_{\alpha \alpha} a_{\gamma \delta, \gamma \beta, \beta}=0$.

We want to combine (14) and (15). Let us call $\psi_{\alpha, \gamma \beta}=a_{\alpha \gamma, \beta \gamma, \beta}$. The last two equations read:

$$
\begin{gather*}
\psi_{\delta, \alpha \beta}=-\psi_{\delta, \beta \alpha} \\
g_{\beta \beta} \psi_{\delta, \gamma \alpha}+g_{\gamma \gamma} \psi_{\delta, \alpha \beta}+g_{\alpha \alpha} \psi_{\delta, \beta \gamma}=0 . \tag{15'}
\end{gather*}
$$

Because of the antisymmetry of $\psi_{\delta, \alpha \beta}$ in its last two indices, as soon as we choose δ we are left with only three quantities linked by the last equation. The most general solution is of the following form

$$
\psi_{\delta, \alpha \beta}=g_{\alpha \alpha} h_{\delta, \beta}-g_{\beta \beta} h_{\delta, \alpha}
$$

with arbitrary $h_{\delta, \beta}$. Indeed (14) and (15) are now identities. The three $h_{\delta, \alpha}, h_{\delta, \beta} h_{\delta, \gamma}$ only appear in the expression of the six $\psi_{\delta, \alpha \beta}=-\psi_{\delta, \beta \alpha}, \psi_{\delta, \alpha \gamma}=$ $-\psi_{\delta, \gamma \alpha}, \psi_{\delta, \beta \gamma}=-\psi_{\delta, \gamma \beta}$, and the conditions for solving back for the h_{δ}, with one degree of arbitrariness, given the ψ, \cdots are precisely Eqs. (14) and (15).

At last we set $f_{\delta \alpha, \alpha}=-f_{\alpha \delta, \alpha}=h_{\delta, \alpha}$. These new f 's are obviously independent of the ones previously defined. Together they build up $f_{\mu v, \rho}=-f_{\nu \mu, \rho,}$ and we now have:

$$
\begin{equation*}
a_{\alpha \beta, \beta \gamma, \gamma}=\psi_{\alpha, \gamma \beta}=g_{\gamma \gamma} f_{\alpha \beta, \beta}-g_{\beta \beta} f_{\alpha \gamma, \gamma} . \tag{16}
\end{equation*}
$$

Using (2) we can unite Eqs. (11), (12), (13), and (16) in a single expression:

$$
\begin{align*}
& a_{\mu_{1} \nu_{1}, \mu_{2} \nu_{2}, \lambda}=f_{\mu_{2} \nu_{1}, \mu_{2}} g_{\nu_{3} \lambda}-f_{\mu_{1} \nu_{1}, \nu_{2}} g_{\mu_{3} \lambda} \\
& -f_{\mu_{2} \nu_{3}, \mu_{1}} g_{\nu_{1} \lambda}+f_{\mu_{2} r_{2}, \nu_{1}} g_{\mu_{1} \lambda}-g_{\mu_{1} \nu_{2}} f_{\nu_{1} \mu_{2}, \lambda} \\
& -g_{\nu_{1} \mu_{g}} f_{\mu_{1} v_{s}, \lambda}+g_{\mu_{1} \mu_{s}} f_{\nu_{1} v_{s}, \lambda}+g_{\nu_{1} v_{s}} f_{\mu_{1} \mu_{2}, \lambda} . \tag{17}
\end{align*}
$$

Equations (2) and (3) are now identities. We are now in position to return to our Lie algebra. We set

$$
\begin{equation*}
L_{\mu \nu}=N_{\mu \nu}-f_{\mu v, \lambda} P^{\lambda} \tag{18}
\end{equation*}
$$

with the same f 's as those which appear in (17).
It is clear that $L_{\mu \nu}=-L_{\mu \nu}$, and that $L_{\mu \nu}$ and P^{λ} generate the same Lie algebra as the N_{μ} and P^{λ} do. But in terms of these new operators, the commutation relations now read [using (17)]:

$$
\begin{aligned}
& {\left[P^{\lambda}, P^{\rho}\right]=0,\left[P^{\lambda}, L_{\mu \nu}\right]=\delta_{\mu}^{\lambda} P_{\nu}-\delta_{\nu}^{\lambda} P_{\mu},} \\
& {\left[L_{\mu_{2} \nu_{2}}, L_{\mu_{2} \nu}\right]=g_{\mu_{1} \nu_{2}} L_{\nu_{1} \mu}+g_{\nu_{1} \mu_{3}} L_{\mu_{1} \nu},} \\
& -g_{\mu_{1} \mu_{9}} L_{r_{1} v_{2}}-g_{r_{1} v_{2}} L_{\mu_{1} \mu_{3}},
\end{aligned}
$$

which are the usual commutation relations for the generators of the inhomogeneous Lorentz group. Hence, our lemma is proved.

Lemma 2: Let \& be a Lie algebra over R which as vector space is the direct sum of an ideal A and a subalgebra M; if A is a semisimple Lie algebra, then there exists an ideal N in \mathcal{L} isomorphic to M and
such that \mathcal{L} is the direct sum of the Lie algebras N and A,

$$
\mathscr{L}=N \oplus A
$$

Proof of Lemma 2: Since A is an ideal in \& if we choose a definite m in $M,[m, a]$ belongs to A and the correspondence $a \rightarrow[m, a]$ defined for every a in A is linear. Because of Jacobi identity it is even a derivation on A :

$$
[b[m, a]]+[m[a, b]]+[a[b, m]]=0
$$

can be read

$$
\begin{equation*}
[m[a, b]]=[[m, a], b]+[a,[m, b]] \tag{19}
\end{equation*}
$$

We now combine this fact, our hypothesis of the semisimplicity of A with the theorem quoted at the end of Sec. 2 to conclude that the derivation given by m is in fact an inner derivation of A; that means there exists an element $\varphi(m)$ belonging to A such that, for any $a \in A$,

$$
\begin{equation*}
[m, a]=[\varphi(m), a] . \tag{20}
\end{equation*}
$$

This element is unique for the equality $\left[\varphi_{1}(m), a\right]=$ $\left[\varphi_{2}(m), a\right]$ which if valid for any $a \in A$ means that $\varphi_{1}(m)-\varphi_{2}(m)$ belongs to the center of A which for a semi-simple Lie algebra is reduced to zero. We now have a correspondence

$$
\varphi: M \rightarrow A \quad m \rightarrow \varphi(m)
$$

We prove that φ is an homomorphism. Because of the unicity of $\varphi(m)$, it is clear that φ is linear.

We use Jacobi identity and the fact that M is a subalgebra of L.

$$
\begin{aligned}
& {\left[\left[m_{1}, m_{2}\right], a\right]=\left\lfloor\varphi\left(\left[m_{1} m_{2}\right]\right), a\right]} \\
& =\left\lceil m_{1}\left[m_{2}, a\right]\right]-\left\lfloor m_{2}\left[m_{1}, a\right]\right\rfloor=\left[\varphi\left(m_{1}\right)\left[\varphi\left(m_{2}\right), a\right] \rrbracket\right. \\
& \left.-\left\lfloor\varphi\left(m_{2}\right),\left[\varphi\left(m_{1}\right), a\right]\right\rfloor=\left[\varphi\left(m_{1}\right), \varphi\left(m_{2}\right)\right], a\right] .
\end{aligned}
$$

The unicity of φ gives

$$
\begin{equation*}
\varphi\left(\left[m_{1}, m_{2}\right]\right)=\left[\varphi\left(m_{1}\right), \varphi\left(m_{2}\right)\right] . \tag{21}
\end{equation*}
$$

This proves our statement that φ is indeed an homomorphism. Let us further note that

$$
\begin{equation*}
\left[m_{1}, \varphi\left(m_{2}\right)\right]=\left[\varphi\left(m_{1}\right), \varphi\left(m_{2}\right)\right] . \tag{22}
\end{equation*}
$$

We define now the subset N of \mathcal{L}. It is the image of the following application:

$$
\psi: \quad M \rightarrow \mathcal{L}, \quad m \rightarrow \psi(m)=m-\varphi(m)
$$

ψ is linear, and moreover, $\psi\left(\left[m_{1}, m_{2}\right]\right)=\left[\psi\left(m_{1}\right), \psi\left(m_{2}\right)\right]$ which turns N into a subalgebra of $£$ homomorphic
to M. This last equality is a direct consequence of (21) and (22). It is also clear that $\psi(m)=0$ implies $m=0$. Indeed $\psi(m)=0$ means $m=\varphi(m)$, but $m \in M$ and $\varphi(m) \in A$ means that $m=\varphi(m)=0$ in virtue of our hypothesis that as a vector space, $\mathfrak{\&}$ is the direct sum of M and A. Hence, N is isomorphic to M. Further, any n in N is an image under ψ of an element in $M: n=\psi(m)$ so that $[n, a]=$ $[m-\varphi(m), a]=0$ because of (20).

It remains to show that any l belonging to \mathfrak{L} can be written in a unique way as $l=n+a$ with $n \in N$ and $a \in A$.

By hypothesis we know that $l=m+a^{\prime}=[m-$ $\varphi(m)]+\left[\varphi(m)+a^{\prime}\right]=n+a$, and this n is obviously unique. This concludes the proof of Lemma 2.

4. PROOF OF THE THEOREM

We turn to the proof of the theorem. The assumptions made imply that the commutation relations between our operators have the following form:

$$
\begin{align*}
& {\left[P^{\lambda}, P^{\mu}\right]=0, \quad\left[P^{\lambda}, M_{\mu \nu}\right]=\delta_{\mu}^{\lambda} P_{\nu}-\delta_{\nu}^{\lambda} P_{\mu},} \\
& {\left[M_{\mu_{1} \nu_{1}}, M_{\mu_{2} \nu_{2}}\right]=g_{\mu_{1} \nu_{2}} M_{\nu_{1} \mu_{2}}+g_{v_{i} \mu_{2}} M_{\mu_{1} \nu_{2}}} \\
& -g_{\mu_{1} \mu_{2}} M_{\nu_{2} \nu_{2}}-g_{\nu_{2} \nu,} M_{\mu_{1} \mu_{2}}, \\
& {\left[A_{i}, P^{\lambda}\right]=0,}
\end{align*} \quad \begin{gathered}
{\left[A_{i}, M_{\mu \nu}\right]=a_{i, \mu \nu}^{\rho \sigma} M_{\rho \sigma}+b_{i, \mu \nu}{ }^{2} A_{l}+C_{i, \mu \nu, \lambda} P^{\lambda},} \tag{23}\\
{\left[A_{i}, A_{i}\right]=d_{i j},{ }^{\rho \sigma} M_{\rho \sigma}+e_{i j}{ }^{l} A_{l}+f_{i j, \lambda} P^{\lambda},}
\end{gathered}
$$

with obvious symmetry properties for the coefficients a, \cdots, f. First, let us prove that $a_{i, \mu r}{ }^{p \sigma}=0$ and $d_{i j}{ }^{\rho \sigma}=0$. We use the Jacobi identity
$\left[P^{\lambda},\left[A_{i}, A_{i}\right]\right]+\left[A_{i},\left[A_{i}, P^{\lambda}\right]\right]$

$$
+\left[A_{i}\left[P^{\wedge}, A_{i}\right]\right]=0
$$

Because of (1) it reads

$$
d_{i j}{ }^{\rho \sigma}\left[P^{\lambda}, M_{\rho \sigma}\right]=0 ;
$$

hence, $d_{i i}^{\text {of }}=0$. Again

$$
\begin{gathered}
{\left[A_{i},\left[M_{\mu \nu}, P^{\lambda}\right] \mathbf{1}+\left[M_{\mu \nu},\left[P^{\lambda}, A_{i}\right]\right]\right.} \\
\quad+\left[P^{\lambda},\left[A_{i}, M_{\mu \nu}\right]\right]=0 \\
a_{i, \mu \nu}^{p \sigma}\left[P^{\lambda}, M_{\rho \sigma}\right]=0
\end{gathered}
$$

so also, $a_{i, \mu \nu}^{\rho \sigma}=0$.
It is clear by inspection of (1) that the P^{λ} generate an ideal \Im in \mathscr{L}, and so we can go to the factor Lie algebra $\mathscr{L}^{\prime}=\mathscr{L} / \mathfrak{J}$. We denote by A_{i}^{\prime} and $M_{\mu \nu}^{\prime}$ the images of A_{i} and M_{μ} under the mapping $\mathcal{L} \rightarrow$ $\mathcal{L} / J=\mathcal{L}^{\prime}$. Using the fact that the a 's and d 's are zero, we get for the commutation relations

$$
\begin{align*}
{\left[M_{\mu_{1} \nu_{1}}^{\prime}, M_{\mu_{2} \nu_{2}}^{\prime}\right]=} & g_{\mu_{2} v_{2}} M_{\nu_{1} \mu_{2}}^{\prime}+g_{\nu_{\nu_{\mu}}} M_{\mu_{1} \nu_{2}}^{\prime} \\
& -g_{\mu_{1} \mu_{3}}^{\prime} M_{\nu_{1} \nu_{2}}^{\prime}-g_{\nu_{2} \nu_{2}} M_{\mu_{1} \mu_{2}}^{\prime} \\
{\left[A_{i}^{\prime}, M_{\mu \nu}^{\prime}\right]=} & b_{i, \mu \nu}^{l} A_{i}^{\prime}, \tag{24}\\
{\left[A_{i}^{\prime}, A_{i}^{\prime}\right]=} & e_{i j}^{l} A_{i}^{\prime} .
\end{align*}
$$

Equation (24) expresses the fact that the A_{i}^{\prime} generate an ideal $a^{\prime} \subset \mathfrak{\&}$. We thus have proved the first two statements of the theorem.

Not only do the A_{i}^{\prime} build up the ideal a^{\prime}, but also the $M_{\mu \nu}^{\prime}$ generate a subalgebra \mathfrak{N}^{\prime} and, as a vector space, \mathfrak{L}^{\prime} is the direct sum of $\mathfrak{T K}^{\prime}$ and \mathfrak{Q}^{\prime}. If we suppose that the algebra Q^{\prime} is semisimple, we can make use of Lemma 2 which asserts that one can find real coefficients $k_{\mu \nu}^{i}=-k_{\nu \mu}^{i}$ such that defining:
$N_{\mu \nu}^{\prime}=M_{\mu \nu}^{\prime}-k_{\mu \nu}^{i} A_{i}^{\prime}$, the $N_{\mu \nu}^{\prime}$ also generate an ideal in \mathcal{L}^{\prime}, and the commutation relations in \mathcal{L}^{\prime} are the same as in (24) with $M_{\mu \nu}^{\prime}$ replaced by $N_{\mu \nu}^{\prime}$ and the coefficients $b_{i, \mu \nu}^{2}$ put equal to zero.

This means, going back to the initial Lie algebra, that by replacing the $M_{\mu \nu}$ by $N_{\mu \nu}=M_{\mu \nu}-k_{\mu \nu}^{i} A_{i}$ we can manage to make the b coefficients disappear. Since $\left[A_{i}, P^{\lambda}\right]=0,\left[N_{\mu \nu}, P^{\lambda}\right]=\left[M_{\mu \nu}, P^{\lambda}\right]$; on the other hand,

$$
\left[N_{\mu_{1} \nu_{2}}, N_{\mu_{2} v_{3}}\right]=\left[M_{\mu_{1} \nu_{2}}, M_{\mu_{2} \nu_{2}}\right] \text { modulo } \mathfrak{J}
$$

This is the same statement as

$$
\left[N_{\mu_{1} \nu_{2}}^{\prime}, N_{\mu_{2} \nu_{2}}^{\prime}\right]=\left[M_{\mu_{1} \nu_{1}}^{\prime}, M_{\mu_{2} \nu_{2}}^{\prime}\right] \text { in } \mathcal{L}^{\prime} .
$$

In other words, the Lie algebra \mathcal{L} is also generated by $P^{\lambda}, N_{\mu v}, A_{i}$ with the commutation relations now reading

$$
\begin{gather*}
{\left[P^{\lambda}, P^{\rho}\right]=0,} \\
{\left[P^{\rho}, N_{\mu \nu}\right]=\delta_{\mu}^{\rho} P_{\nu}-\delta_{\nu}^{\rho} P_{\mu},} \\
{\left[N_{\mu_{1} \nu_{2}}, N_{\mu_{2} \nu_{2}}\right]=g_{\mu_{1} \nu_{2}} N_{\nu_{1} \mu_{2}}+g_{\nu_{1} \mu_{2}} N_{\mu_{1} \nu_{z}}} \\
-g_{\mu_{1} \mu_{2}} N_{\nu_{2} \nu_{2}}-g_{\nu_{2} \nu_{2}} N_{\mu_{2} \mu_{2}}+m_{\mu_{1} \nu_{1}, \mu_{2} \nu_{2}, \rho} P^{\rho}, \tag{25}\\
{\left[A_{i}, N_{\mu \nu}\right]=c_{i, \mu \nu, \lambda} P^{\lambda},} \\
{\left[A_{i}, A_{i}\right]=e_{i i}^{l} A_{i}+f_{i i, \lambda} P^{\lambda} .}
\end{gather*}
$$

We now observe that P^{λ} and $N_{\mu \nu}$ generate a subalgebra in \mathcal{L}, and the commutation relations are just the ones discussed in Lemma 1 where it was proved that there exist linear combinations

$$
L_{\mu \nu}=N_{\mu \nu}-l_{\mu \nu, \lambda} P^{\lambda}=M_{\mu \nu}-k_{\mu \nu}^{i} A_{i}-l_{\mu \nu, \lambda} P^{\lambda},
$$

such that P^{λ} and $L_{\mu \nu}$ have the same commutation relations as the previous P^{λ} and $M_{\mu \nu}$ had. Again P^{λ} commutes with A_{i} so that
$\left[A_{i}, L_{\mu \nu}\right]=\left[A_{i}, N_{\mu \nu}\right]$, and also, $\left[P^{\lambda}, L_{\mu \nu}\right]=\left[P^{\lambda}, N_{\mu \nu}\right]$.

Hence, our algebra \& is still generated by $P^{\lambda}, L_{\mu \nu}$ and A_{i}, but we now have the commutation rules:

$$
\begin{align*}
{\left[P^{\lambda}, P^{\rho}\right]=} & 0, \\
{\left[P^{\rho}, L_{\mu \nu}\right]=} & \delta_{\mu}^{\rho} P_{v}-\delta_{\nu}^{\rho} P_{\mu} \\
{\left[L_{\mu_{2} \nu_{1}}, L_{\mu_{2} v_{2}}\right]=} & g_{\mu_{2} \nu_{2}} L_{\nu_{2} \mu_{v}}+g_{\nu_{1} \mu_{2}} L_{\mu_{1} v_{s}} \\
& \quad-g_{\mu_{1} \mu_{s}} L_{r_{1} \nu_{s}}-g_{v_{1} \nu_{2}} L_{\mu_{1} \mu_{\mathrm{s}},} \tag{26}\\
{\left[A_{i}, L_{\mu \nu}\right]=} & c_{i, \mu \nu, \lambda} P^{\lambda}, \\
{\left[A_{i}, A_{i}\right]=} & e_{i i}^{l} A_{l}+f_{i i, \lambda} P^{\lambda} .
\end{align*}
$$

We have not yet made full use of the Jacobi identities in £. Indeed we have to make sure that

$$
\begin{aligned}
& {\left[A_{i},\left[L_{\mu \nu}, L_{\rho \sigma}\right]\right]+\left[L_{\mu v},\left[L_{\rho \sigma}, A_{i}\right]\right]} \\
& \quad+\left[L_{\rho \sigma},\left[A_{i}, L_{\mu \nu}\right]\right]=0 .
\end{aligned}
$$

Using (26) we get

$$
\begin{align*}
& c_{i, \mu \nu, \rho} g_{\sigma \lambda}-c_{i, \mu \nu, \sigma} g_{\rho \lambda}-c_{i, \rho \sigma, \mu} g_{\nu \lambda}+c_{i, \rho \sigma, \nu} g_{\mu \lambda} \\
& =c_{i, \nu \rho, \lambda} g_{\mu \sigma}+c_{i, \mu \sigma, \lambda} g_{\nu \rho}-c_{i, \mu \rho, \lambda} g_{\nu \sigma}-c_{i, \nu \sigma, \lambda} g_{\mu \rho} . \tag{27}
\end{align*}
$$

We now try to find the most general solution of (27). Let us put in (27) $\mu=\rho \neq \nu \neq \sigma$ and $\lambda=\nu$. The result is

$$
g_{\nu \nu} c_{i, \mu \sigma, \mu}=g_{\mu \mu} c_{i, v \sigma, \nu}
$$

Hence, $c_{i, \mu \sigma, \mu}=-g_{\mu \mu} p_{i, \sigma}$, where the $p_{i, \sigma}$ are some real numbers.

Again let us write (27) with $\mu=\rho \neq \nu \neq \sigma \neq \lambda$ which is possible since we have four values at our disposal. The result is $c_{i, \nu \sigma, \lambda}=0$ if λ is different from ν and σ. Combining this result with the previous one, we get

$$
\begin{equation*}
c_{i, \mu \nu, \sigma}=g_{\nu \sigma} p_{i, \mu}-g_{\mu \sigma} p_{i, \nu} \tag{28}
\end{equation*}
$$

In writing (28) we have also made use of the fact that $c_{i, \mu \nu, \sigma}=-c_{i, \nu \mu, \sigma}$. Using (28) one can now check that (27) is an identity. We set $B_{i}=A_{i}-p_{i, \mu} P^{\mu}$. Now $\left[B_{i}, L_{\mu \nu}\right]=0$, and since $\left[P^{\lambda}, A_{i}\right]=0$ and $\left[P^{\lambda}, P^{\rho}\right]=0$, we also have

$$
\begin{aligned}
{\left[B_{i}, B_{i}\right] } & =\left[A_{i}, A_{i}\right]=e_{i j}{ }^{l} A_{i}+f_{i i, \lambda} P^{\lambda} \\
& =e_{i j}{ }^{l} B_{l}+f_{i i, \lambda}^{\prime} P^{\lambda},
\end{aligned}
$$

with $f_{i i, \lambda}^{\prime}=f_{i j, \lambda}+e_{i j}{ }^{l} p_{l, \lambda}$. The last Jacobi identity, namely
$\left[\left[B_{i} B_{i}\right], L_{\mu \nu}\right]+\left[\left[B_{i}, L_{\mu \nu}\right] B_{i}\right]+\left[\left[L_{\mu \nu}, B_{i}\right], B_{i}\right]=0$
tells us $f_{i j, \lambda}^{\prime}\left[P^{\lambda}, L_{\mu \nu}\right]=0$; that is, $f_{i i, \lambda}^{\prime}=0$.
Our proof is now complete since using the assumptions of the theorem we were able to show that starting with a set of $P^{\lambda}, M_{\mu \nu}$, and A_{i} satisfying (23)
there exists a set of numbers $k_{\mu \nu}{ }^{i}, l_{\mu \nu, \lambda}, p_{i, \mu}$ such that setting
and

$$
\begin{equation*}
L_{\mu \nu}=M_{\mu v}-k_{\mu \nu}{ }^{i} A_{i}-l_{\mu r, \lambda} P^{\lambda} \tag{29}
\end{equation*}
$$

the $P^{\lambda}, L_{\mu \nu}, B_{i}$ generate the same Lie algebra as before, but their commutation relations now read

$$
\begin{align*}
{\left[P^{\lambda}, P^{\rho}\right]=} & 0, \quad\left[P^{\lambda}, L_{\mu \nu}\right]=\delta^{\lambda}{ }_{\mu} P_{\nu}-\delta^{\lambda}{ }_{\nu} P_{\mu}, \\
{\left[L_{\mu_{1} \nu_{1}}, L_{\mu_{2} \nu_{2}}\right]=} & g_{\mu_{1} \nu_{2}} L_{\nu_{1} \mu_{2}}+g_{\nu_{2} \mu_{2}} L_{\mu_{1} \nu_{2}} \\
& -g_{\mu_{1} \mu_{2}} L_{\nu_{\nu_{1} \nu_{2}}}-g_{\nu_{1} \nu_{2}} L_{\mu_{2} \mu_{2}}, \tag{30}\\
{\left[B_{i}, P^{\lambda}\right]=} & {\left[B_{i}, L_{\mu_{\nu}}\right]=0, } \\
{\left[B_{i}, B_{j}\right]=} & e_{i i}{ }^{l} B_{l} .
\end{align*}
$$

Hence, we have succeeded in splitting our Lie algebra into a direct sum of two algebras, one generated by the P^{λ} and $L_{\mu \nu}$, call it \mathcal{P}, isomorphic to the one of the generators of the inhomogeneous Lorentz group, the second generated by the B_{i}, call it \mathbb{Q} with \mathbb{Q} semisimple. a is clearly isomorphic with Q^{\prime} introduced earlier. The theorem is proved.

5. REMARKS

The crucial point in Sec. 4 was in assuming that \boldsymbol{a}^{\prime} is semisimple. This of course has not much to do with any kind of physical assumption. However, as our discussion shows, if we keep the hypothesis that $\left[A_{i}, P^{\lambda}\right]=0$, the only way to get a final answer different from the one given in the theorem is to find a

Lie algebra a such that it should be impossible to interpret the derivations $A_{i}^{\prime} \rightarrow\left[M_{\mu \nu}, A_{i}^{\prime}\right]$ as inner derivations. A typical case would be the following. Call D the Lie algebra of derivations on \mathfrak{a}^{\prime} and \mathscr{D}^{\prime} the Lie algebra of inner derivations on a^{\prime}. If there exists a nontrivial homomorphism of the Lie algebra \mathfrak{N} of the homogeneous Lorentz group in $\mathfrak{D} / \mathscr{D}^{\prime}$, then the last conclusion of the theorem would be false. By nontrivial homomorphism, we mean any homomorphism except the one which sends \mathfrak{M} on $0 \in \mathscr{D} / \mathscr{D}^{\prime}$. In our previous considerations we made the assumption of semisimplicity in order to assure $\mathscr{D} / D^{\prime}=0$ which forced the homomorphism $\mathfrak{M} \rightarrow$ $D / D^{\prime}=0$ to be the trivial one. We see that the theorem extends to the case where a has zero center and $\mathfrak{T l} \rightarrow \mathscr{D} / \mathscr{D}^{\prime}$ has to be the trivial homomorphism.

In conclusion one can point out the parallelism of this result with McGlinn's theorem which assumed that $\left[A_{i}, M_{\mu \nu}\right]=0$. The outcome was then that the A_{i} generate a subalgebra a of \mathcal{L}; if this subalgebra was supposed to be semisimple (or more generally to have no abelian factor algebra ${ }^{6}$) then $\left[A_{i}, P^{\lambda}\right]=0$ and \mathfrak{L} splits into $\mathbb{A} \oplus P$.

ACKNOWLEDGMENTS

It is a great pleasure to thank Dr. W. K. H. Panofsky for his hospitality at SLAC and Dr. S. M. Berman for useful discussions.

[^27]
The Gravitational Compass*

P. Szekeres \dagger
Kings College, London, England
(Received 7 October_1964; final manuscript received 25 February 1965)

Abstract

A'purely covariant approach to general relativity, using the equation of geodesic deviation, is adopted. The physical interpretation is essentially that due to Pirani, but instead of using clouds of particles to analyze the gravitational field, a "gravitational compass" is proposed which fulfills the same purpose. Particular attention is focussed on the different roles played by the matter and the free gravitational field. The latter splits up conveniently into a super-position of a transverse wave component, a longitudinal component, and a "Coulomb" field, all of which introduce "shearing" forces on the gravitational compass, while the matter contributes a general contraction. Applications to the Friedmann cosmological models and the problem of interacting gravitational waves are discussed.

1. INTRODUCTION

TTHE general principle of covariance makes the task of interpreting coordinate systems in general relativity an exceptionally difficult one. Indeed the only statement which general relativity makes about coordinates appears in the principle of equivalence, which is expressed mathematically by the fact that at any point of a Riemannian manifold the Christoffel symbols $\Gamma_{b c}^{a}$ can be transformed away. A genuine gravitational field corresponds to a manifold in which this cannot be done everywhere simultaneously; that is, the covariant curvature tensor $R_{a b c d}$ must be nonvanishing. Consequently, we must concentrate our attention on this object if a satisfactory interpretation of general relativity is to be found.

The second fundamental assertion of general relativity is the postulation of the Einstein field equations,

$$
\begin{equation*}
G_{a b}=R_{a b}-1 / 2 R g_{a b}=-T_{a b} . \tag{1}
\end{equation*}
$$

This equation reveals a peculiar dichotomy in the role of matter in general relativity; for on the lefthand side we have a geometrical object, to be measured by clocks and measuring rods, whereas on the right we have a dynamical quantity to be measured by pushing it around and observing the reaction. To resolve this difficulty we must realize that there are nongravitational fields such as electromagnetic and nuclear fields which give matter properties of solidity and hardness and allow us to carry out dynamical experiments. In a purely gravitational theory such as general relativity it is only the lefthand side of (0) that has a meaning; in this paper the point of view is adopted that the matter is given

[^28]by the geometry rather than the other way around.
The full Riemann tensor has 20 independent components whereas $R_{\text {ab }}$ has only 10. The following decomposition shows up the interdependence most clearly ${ }^{1}$:
\[

$$
\begin{align*}
R_{a b c d}=C_{a b c d}+g_{a!c} & R_{d \mid b} \\
& +R_{a t c} g_{d \mid b}-\frac{1}{3} R g_{a!c} g_{d] b} . \tag{2}
\end{align*}
$$
\]

The Weyl tensor $C_{a b c d}$ has the symmetries of a vacuum Riemann tensor; hence, it has 10 independent components which at any point are completely independent of the Ricci tensor components. We say, therefore, that it corresponds to the free gravitational field. Globally, however, the Weyl tensor and Ricci tensor are not independent, as they are connected by the differential Bianchi identities $R_{a b[t a ; 1]}=0$. These identities determine the interaction between the free gravitational field and the field sources; they will be discussed in greater detail elsewhere.
In this paper the physical interpretation of the decomposition (2) is discussed in some detail. Pirani's approach ${ }^{2}$ from the equation of geodesic deviation is adopted, but his "dust cloud" experiments are tidied up by using a tetrahedral arrangement of springs. It is to be emphasized, however, that the two descriptions are completely equivalent, the one adopted here only being preferred because of its simplicty. It is shown by means of the Petrov classification how the local free gravitational field is composed of the linear sum of three distinct com-ponents-a transverse wave, a longitudinal wave, and a Coulomb component, each having a characteristic effect on the gravitational compass. An application to the Friedmann cosmological models makes it clear that it is just in the existence of such free

[^29]gravitational fields (that is, in Weyl tensor components) that the Einstein theory differs most essentially from the Newtonian.

2. THE PHYSICAL INTERPRETATION OF THE PETROV CLASSIFICATION

Pirani and Schild ${ }^{3}$ have given a physical interpretation of the Weyl tensor in terms of the deviation of null geodesics. While this approach has the advantage of being conform invariant, we shall consider only the deviation of timelike geodesics, as this appears to bring out the Petrov structure more clearly.

Consider a geodesic observer whose world line has unit tangent $u^{a}=d x^{a} / d s$

$$
\begin{aligned}
u_{a} u^{a}=-1, \quad \dot{u}_{a} & =u_{a ; b} u^{b} \\
& =\left(\frac{d^{2} x^{c}}{d s^{2}}+\Gamma_{d b}^{c} \frac{d x^{d}}{d s} \frac{d x^{b}}{d s}\right) g_{c a}=0 .
\end{aligned}
$$

The signature is taken to be +2 . Let δx^{a} be the displacement vector between neighboring geodesics ($u_{a} \delta x^{a}=0$). Then the equation of geodesic deviation ${ }^{4}$ reads

$$
\begin{equation*}
\delta \ddot{x}^{a}=R_{b d d}^{a} u^{b} u^{d} \delta x^{c} . \tag{3}
\end{equation*}
$$

Hence, the symmetric tensor $K_{a c}=R_{a b c u} u^{b} u^{d}$ may be thought of as representing the gradient of the gravitational force in the instantaneous 3 -space of the observer. Pirani ${ }^{2}$ has suggested that the physical components of the Riemann tensor can be determined by experiments consisting of throwing up clouds of test particles and measuring the relative accelerations between them. A more straightforward and rather less cumbersome procedure is the following. Consider a tetrahedral arrangement of springs connecting three test particles to the central observer and each other, as shown in Fig. 1. At the instant of measurement the observer "drops" the apparatus (i.e., sends it on a geodesic tangent to his world line), and observes the strains on the springs. As the symmetric force distribution $K_{a b}$ has six in-

Fig. 1. The gravitational compass.

[^30]dependent components, the strains on the six springs determine it completely as the solutions of an elementary problem in statics. When the strains on the diagonal springs S_{12}, S_{13}, S_{23} vanish, then the springs S_{1}, S_{2}, S_{3} connecting the three test particles to the observer lie along the principal axes of $K_{a b}$. Thus the device maps out the local gravitational field and and an appropriate name for it is a "gravitational compass."

Substituting (2) into equation (3), we get
$\delta \ddot{x}^{a}=C_{b c d}^{a} u^{b} u^{d} \delta x^{c}+\frac{1}{3}\left(R_{b d} u^{b} u^{d}\right) \delta x^{a}-\frac{1}{2} S_{c}^{a} \delta x^{c}$,
where

$$
\begin{gathered}
h_{a b}=g_{a b}+u_{a} u_{b}, \\
S_{a c}=h_{a}^{b} h_{c}^{d} R_{b d}-\frac{1}{3} h^{b d} R_{b d} h_{a c} .
\end{gathered}
$$

Thus the force gradient $K_{a b}$ is made up of a sum of three terms appearing on the right-hand side of (4). The first term is the contribution of the free gravitational field; it is to be thought of as introducing "shearing" forces, since it is symmetric and tracefree. The second term gives rise to an "expansive" force $\frac{1}{3} R_{b d} u^{b} u^{d} h_{c}^{a}$, while the last term represents a further shear introduced by the matter present.
In order to analyze the Weyl tensor contribution in (4), it is convenient to set up a tetrad of null vectors. To do this we supplement u^{a} with an orthonormal triad of spacelike vectors s^{a}, e^{a}, e^{a}, and put

$$
\begin{array}{rlrl}
k^{a} & =u^{a}+s^{a}, & t^{a} & =(1 / \sqrt{2})\left(e_{1}^{a}+i e_{2}^{a}\right), \tag{5}\\
m^{a} & =\frac{1}{2}\left(s^{a}-u^{a}\right), & t^{a}=(1 / \sqrt{2})\left(e_{1}^{a}-\underset{2}{i e^{a}}\right) .
\end{array}
$$

The null vectors $k^{a}, m^{a}, t^{a}, t^{a}$ satisfy the quasiorthonormality conditions

$$
\begin{align*}
k_{a} m^{a}=t_{a} t^{a}=1 & \quad k_{a} k^{a}=k_{a} t^{a} \\
& =m_{a} m^{a}=m_{a} t^{a}=t_{a} t^{a}=0, \tag{6}
\end{align*}
$$

and, following Sachs ${ }^{5}$, we can decompose the (complex) Weyl tensor into null-tetrad components:

$$
\begin{align*}
& C_{a b c d}+i C_{a b c d}^{*}=C^{(1)} V_{a b} V_{c d} \\
& \quad+C^{(2)}\left(V_{a b} M_{c d}+M_{a b} V_{c d}\right) \\
& \quad+C^{(3)}\left(M_{a b} M_{c d}+U_{a b} V_{c d}+V_{a b} U_{c b}\right) \\
& \quad+C^{(4)}\left(U_{a b} M_{c d}+M_{a b} U_{c d}\right)+C^{(5)} U_{a b} U_{c d}, \tag{7}
\end{align*}
$$

where

$$
\begin{aligned}
& V_{a b}=2 k_{[a} t_{b]}, \quad U_{a b}=2 m_{โ a} t_{b 1}, \\
& M_{a b}=2 k_{[a} m_{b]}+2 t_{[a} t_{b]},
\end{aligned}
$$

[^31]and $C_{a b c d}^{*}$ is the dual of the Weyl tensor,
$$
C_{a b c d}^{*}=\frac{1}{2}(-g)^{\frac{1}{3}} \epsilon_{a b i j} C^{i j}{ }_{c d},
$$
where $\epsilon_{a b c d}$ is the Levi-Civita alternating symbol.
The different Petrov types can be distinguished by the possibility of setting various combinations of the coefficients $C^{(\mu)}(\mu=1, \cdots, 5)$ equal to zero in a suitable frame. ${ }^{5}$ Thus Petrov type N is characterized by the fact that there exists a null vector k_{a} satisfying
$$
C_{a b c d} k^{a}=0
$$
and by adapting the tetrad (5) to this null vector we have that $C^{(2)}=C^{(3)}=C^{(4)}=C^{(5)}=0$. By a spacelike rotation $t^{a} \rightarrow e^{i \theta} t^{a}$ it is furthermore possible to make $C^{(1)}$ real. Any observer moving in a timelike direction u^{a} can set up a frame in which these conditions are satisfied, and the deviation of free test particles about him will be given by substituting into (3) and making use of (5):
\[

$$
\begin{equation*}
\delta \ddot{x}^{a}=\frac{1}{2} C^{(1)}\left(\underset{12}{a} e_{c}^{a} e_{2}-e_{2}^{a} e_{c}\right) \delta x^{c} . \tag{8}
\end{equation*}
$$

\]

This exhibits the well known transverse character of Petrov type N fields ${ }^{6} ; e_{1}^{a}$ and e_{2}^{a} are a pair of polarization axes lying in the plane orthogonal to s^{a} [Fig. 2(a)]. As this character is completely independent of the observer u^{a}, we call these fields pure transverse gravitational waves; s^{a} is the wave direction relative to the observer u^{a}.

In Petrov type-III fields there exists a null vector satisfying

$$
k_{a} k_{l o} C_{b l e d}^{a}=0,
$$

and by choosing k_{a} in (5) along this direction we have $C^{(3)}=C^{(4)}=C^{(5)}=0$. A spacelike rotation can again be used to make $C^{(2)}$ real. The second term on the right-hand side of (7) will then contribute a deviation

$$
\begin{equation*}
\delta \grave{x}^{a}=\frac{1}{2} C^{(2)}\left(s_{1}^{a} e_{c}+e_{1}^{a} s_{c}\right) \delta x^{c} \tag{9}
\end{equation*}
$$

Thus the force distribution has a planar character similar to that in (8) but this time the plane contains the wave direction s_{a}; thus we may term this a longitudinal wave component. The polarization axes are tilted at 45° to e^{a} and s^{a} [Fig. 2(b)]. In general there will be a transverse $C^{(1)}$ term such as (8) superimposed on the longitudinal component, but there is a special class of observers who can make $C^{(1)}=0$. This is the class of observers for which u^{a} lies in

[^32]

Fig. 2. The forces on the gravitational compass arising (a) from a transverse gravitational wave, (b) from the longitudinal component, and (c) from the Coulomb component.
the timelike 2 -space spanned by the two Debever vectors k_{a} and m_{a}.

The $C^{(3)}$ term of Eq. (7) gives rise to a contribution

$$
\begin{equation*}
\delta \ddot{x}^{a}=C_{1}^{(3)}\left[s^{a} s_{c}-\frac{1}{2}\left(e_{11}^{a} e_{c}+e_{2}^{a} e_{c}\right)\right] \delta x^{c}, \tag{10}
\end{equation*}
$$

where

$$
C^{(3)}=C_{1}^{(3)}+i C_{2}^{(3)}
$$

This force distribution has the effect of distorting a sphere of particles about the observer into an ellipsoid which has s^{a} as principal axis and is degenerate in the plane perpendicular to s^{a} [Fig. 2(c)]. This is typical of the behavior of particles falling in towards a central attracting body with the inverse square law (e.g., in the Schwarzschild solution, or in Newtonian theory). Hence, we call this term the Coulomb part of the field; the strength of the Coulomb field is given by the real part of $C^{(3)}$. In a field of Petrov type D it is always possible to find a frame in which $C^{(1)}=C^{(2)}=C^{(4)}=C^{(5)}=0$, and hence, an observer for whom the force distribution will take on the appearance of Fig. 2(c).

In a Petrov type-II field the best we can do is to make $C^{(2)}=C^{(4)}=C^{(5)}=0$, so that it can be viewed as a Coulomb field with an outgoing wave component superimposed. In the algebraically general case (Petrov type I) we must always get some contributions from $C^{(4)}$ and $C^{(5)}$ as well; at best it is possible to find a frame in which $C^{(2)}=C^{(4)}=0$. To an observer in this frame the field will appear as a Coulomb field with incoming and outgoing transverse waves superimposed along the principal axis of the Coulomb field. This setting up of preferred frames with which to look at the gravitational
field is completely analogous to the setting up of canonical frames in electrodynamics. ${ }^{7}$

3. THE EFFECT OF LORENTZ TRANSFORMATIONS

The preceding section demonstrates how an observer may use a gravitational compass to establish the force gradient of the gravitational field in his instantaneous 3 -space. However, this is by no means the whole story. To find all physical components of the Weyl tensor we must consider observers with other velocities, that is to say, we must investigate the effects of a Lorentz transformation. Consider first a timelike rotation of the null tetrad in the (k, m) plane,

$$
\begin{aligned}
k_{a}^{\prime} & =\{(1+v) /(1-v)\}^{\frac{1}{2}} k_{a}, \\
m_{a}^{\prime} & =\{(1-v) /(1+v)\}^{\frac{1}{2}} m_{a}, \quad t_{a}^{\prime}=t_{a} .
\end{aligned}
$$

This corresponds to a simple Lorentz transformation to an observer $u^{\prime a}$ traveling with velocity v in the s^{a} direction. Then

$$
\begin{align*}
& C^{\prime(1)}=\frac{1}{2} C_{a b c d} U^{\prime a b} U^{\prime c d} \\
&=C^{(1)}(1-v) /(1+v), \\
& C^{\prime(2)}=-\frac{1}{4} C_{a b c d} U^{\prime a b} M^{\prime c d} \\
&=C^{(2)}\{(1-v) /(1+v)\}^{\frac{1}{2}}, \tag{11}\\
& C^{\prime(3)}=\frac{1}{8} C_{a b c d} M^{\prime a b} M^{\prime c d}=C^{(3)} .
\end{align*}
$$

Thus in Petrov type N, by increasing his speed in the wave direction s_{a}, the observer experiences a weakening of the wave amplitude by the factor $(1-v) /(1+v)$, and by a Lorentz transformation in the opposite direction he observes a corresponding increase in the amplitude. The same is true for the longitudinal type-III component except that the factor is $\{(1-v) /(1+v)\}^{\frac{3}{3}} . C^{(3)}$ is invariant; hence, the Coulomb strength is unaffected by such a trans-formation-the spring strains on the gravitational compass will be independent of the radial speed of the observer.

Consider now a transformation to a frame traveling with velocity v in the e_{a} direction,

$$
u^{\prime a}=\left(u^{a}+v e^{a}\right) \cdot\left(1-v^{2}\right)^{-\frac{1}{2}}
$$

In order to compensate for aberration it is necessary to supplement the simple Lorentz transformation with a rotation in the $\left(s_{a}, e_{a}\right)$ plane-that is, we want k^{a} to point in the $s^{\prime a}$ direction. The desired

[^33]Lorentz transformation can be achieved by the following rotation of the null tetrad:

$$
\begin{gathered}
k^{\prime a}=k^{a}\left(1-v^{2}\right)^{\frac{1}{2}} \\
t^{\prime a}=t^{a}+k^{a} v / \sqrt{2}, \\
m^{\prime a}=\left(1-v^{2}\right)^{-\frac{1}{2}} m^{a}-v\left\{2\left(1-v^{2}\right)\right\}^{-\frac{1}{2}}\left(t^{a}+t^{a}\right) \\
\\
\quad-k^{a} \cdot v^{2} / 2\left(1-v^{2}\right)^{\frac{3}{2}} .
\end{gathered}
$$

From Eqs. (6) and (7) we can find the transformation of the $C^{(\mu)}$'s under this Lorentz transformation. In particular if we are transforming from a canonical observer in a type- D field, we get

$$
\begin{aligned}
& C^{\prime(1)}=C^{(3)} 3 v^{2} /\left(1-v^{2}\right) \\
& C^{\prime(2)}=C^{(3)} 3 v /\left\{2\left(1-v^{2}\right)\right\}^{\frac{3}{2}} \\
& C^{\prime(3)}=C^{(3)}
\end{aligned}
$$

As $v \rightarrow 1$ the $C^{(1)}$ part dominates; for an observer rushing past a Schwarzschild source at a speed close to the fundamental velocity, the field will take on the appearance of a transverse gravitational wave. ${ }^{8}$

A vacuum gravitational field can be completely determined by means of these two Lorentz transformations. By using two gravitational compasses traveling at a relative velocity with respect to each other in the s_{a} direction, the observer can determine all components of the Weyl tensor except $C_{2}^{(3)}$. This is clear from (11) since $C^{(3)}$ is left invariant by this transformation and only the real part enters into the equation of geodesic deviation. A third compass traveling in the e_{a} direction can be used to determine the imaginary part of $C^{(3)}$ as well. The presence of matter can in general be detected by a contraction on the gravitational compass since

$$
K_{a}^{a}=R_{a b} u^{a} u^{b}=\frac{1}{2}\left(T_{11}+T_{22}+T_{33}-3 T_{00}\right),
$$

which has a negative value for all physically realistic matter fields of nonzero rest mass. If matter is present, at least four compasses will be needed to determine the gravitational field, since the curvature tensor now has 20 independent components.

4. APPLICATIONS

A. Presence of a Null Electromagnetic Field

In this case

$$
R_{a b}=-T_{a b}=-A k_{a} k_{b}, \quad k_{a} k^{a}=0
$$

If u_{a} is any timelike vector with $k_{a}=u_{a}+s_{a}$, then

$$
R_{a b} u^{a} u^{b}=-A, \quad S_{a b}=-A\left(s_{a} s_{b}-\frac{1}{3} h_{a b}\right),
$$

[^34]and from (4) the total contribution to the geodesic deviation arising from the electromagnetic field is
$$
-\frac{1}{2} A\left(e_{11}^{a} e_{b}+e_{22}^{a} e_{b}^{a}\right) \delta x^{b} .
$$

That is, the electromagnetic field contributed an axially symmetric contraction about the wave direction. If the electromagnetic wave is accompanied by a pure transverse gravitational wave (cf. the $p \cdot p$. wave solutions of Kundt ${ }^{9}$), the directions of polarization of the gravitational wave will not be affected by the electromagnetic field, but the circle of accelerations will now develop an eccentricity.

B. Friedmann Cosmological Models

For a perfect fluid, the energy-stress tensor takes the form

$$
\begin{equation*}
T_{a b}=\mu u_{a} u_{b}+p h_{a b} \tag{12}
\end{equation*}
$$

whence the field equations give

$$
R_{a b} u^{a} u^{b}=-\frac{1}{2}(3 p+\mu)+\Lambda, \quad S_{a b}=0
$$

where Λ is the cosmological constant. The Friedmann cosmological solutions are conformal to flat space and hence $C_{a b c d}=0$. In this case there is no free gravitational field present, and an observer traveling with the particles of the fluid will experience no shearing forces on his gravitational compass. He will observe contractive forces if $\Lambda<\frac{1}{2}(3 p+\mu)$, expansive forces if $\Lambda>\frac{1}{2}(3 p+\mu)$, and no forces if $\Lambda=\frac{1}{2}(3 p+\mu)$ (Einstein's static model). The preferred frame determined by the distribution of matter in the Friedmann universe is the one for which the shearing forces $S_{a b}$ vanish. Hence, by purely local experiments involving a gravitational compass an observer can determine the rest frame of the universe. In this sense, the Friedmann universe is "Machian." We see however that the expansion of the universe should not be looked upon as a gravitational effect at all, since it does not involve the Weyl tensor. The only force operative in the Friedmann models is the local contractive force

$$
\left(-\frac{1}{2}\left(p+\frac{1}{3} \mu\right)+\frac{1}{3} \Lambda\right) \delta x^{a}
$$

which, in the case of vanishing pressure and cosmological constant, reduces to the Newtonian force due to small sphere of radius $\left(\delta x_{a} \delta x^{a}\right)^{\frac{1}{2}}$ and density $\rho=(3 / 8 \pi) \gamma^{-1} \mu(\gamma=$ Newtonian gravitational constant). This accounts for the extraordinary sucess of the Newtonian theory in isotropic universes. ${ }^{10}$ General relativity only differs radically from New-

[^35]tonian theory when there is a free gravitational field (Weyl tensor) present; for example; there is nothing corresponding to the radiation fields in Newtonian theory. Hence the expansion of the universe is not due to any peculiar properties of gravitation in general relativity, but arises from one of the following possibilities:
(i) the initial conditions involve an initial expansion between neighboring particles (e.g., in the "bigbang" theory) or
(ii) the cosmological constant Δ is large (e.g., the deSitter universe or steady-state theory).

C. Interacting Gravitational Waves

Suppose we have two type- N gravitational waves traveling along distinct null directions k^{a} and m^{a}. The observer with the frame given by (5) sees these waves as traveling in opposite directions s_{a} and $-s_{a}$. If there were no interaction between the waves then the forces this observer obtains on his gravitational compass will be in the (e_{a}, e_{a}) plane and the field strength should be the sum of the two wave amplitudes. Thus a solution representing two waves "passing through" each other would be expected to have, in this frame,

$$
C_{a b o d}=C^{(1)} V_{a b} V_{c d}+C^{(5)} U_{a b} U_{c d}
$$

Substituting into the vacuum Bianchi identities $C_{a b c d ; d}=0$ and contracting with $k^{a} m^{b} U^{c o}$ gives

$$
C^{(1)} k_{b ; d^{2}} l^{b} k^{d}=C^{(1)} k_{b ; d} d^{b} z^{d}=0
$$

This is the condition that k_{a} is geodesic and shearfree (see Sachs ${ }^{5}$). There is a theorem of Goldberg and Sachs ${ }^{11}$ which states the following:
"A vacuum metric is algebraically special if and only if it admits a shear-free null geodesic congruence."

Hence, in the above case the Weyl tensor must be algebraically special with k_{a} as a principal null direction. This contradicts $C^{(5)} \neq 0$. Hence, we cannot have a linear superposition of transverse gravitational waves if they are not running in the same direction, but the true nature of the interaction will remain obscure until exact solutions representing two waves in collision are found.

ACKNOWLEDGMENTS

The author is indebted to Dr. F. A. E. Pirani for his help and encouragement in the preparation of this paper. This paper was supported in part by AFOSR Grant 321-63.

[^36]
Algebraic Derivation of the Partition Function of a Two-Dimensional Ising Model*

Colin J. Thompson \dagger
Department of Physics, University of California, San Diego, La Jolla, California

(Received 2 November 1964)

Abstract

In the algebraic formulation of the Ising model, the partition function is expressed as the trace of a power V^{M} of the transfer operator V, or equivalently, as the sum of M th powers of the eigenvalues of V. In the derivations of Kaufman, Onsager, and more recently of Schultz, Mattis, and Lieb (SML), the transfer operator is first reduced to a more amenable form for computation and then, in principle at least, diagonalized. For the infinite lattice, only the largest eigenvalue of V is needed, and this is all Onsager and SML compute. Kaufman finds all the eigenvalues and is thus able to write down the partition function for the finite lattice. In the present work we give an alternative derivation of the SML form for V, and show how the Kaufman result can be obtained from this form without actual diagonalization. Instead of diagonalizing V, the evaluation of the trace is done directly after assigning a simple representation to V.

I. INTRODUCTION

SINCE Onsager's celebrated solution of the twodimensional Ising model in 1944, ${ }^{1}$ there have been numerous alternative derivations of the Onsager result, a number of derivations of correlations and spontaneous magnetization, and some generalizations to other types of two dimensional lattices. Reviews of the work prior to 1960 are given in the articles of Domb ${ }^{2}$ and Newell and Montroll. ${ }^{3}$

Roughly speaking, one can divide the methods used into two categories: the combinatorial approach, which essentially counts polygons on the lattice; and the algebraic approach. The combinatorial approach began in 1952 with the work of Kac and Ward. ${ }^{4}$ Their approach has since been refined and been given a rigorous treatment, ${ }^{5}$ and in its present form is the most popular method. ${ }^{6}$ The popularity is undoubtedly due to the relative simplicity of the method compared with the original formidable algebraic approach of Onsager, and even with the simplified algebraic approach of Kaufman. ${ }^{7}$ In recent times the algebraic approach has been given little attention. Recently however, Schultz, Mattis, and Lieb ${ }^{8}$ (called SML hereinafter) have shown how the

[^37]algebraic formulation of Onsager, leads to a manyfermion problem, the solution of which requires only an elementary knowledge of spin $-\frac{1}{2}$ and the second quantization formalism for Fermions. Much of the mysticism surrounding the algebraic method is clarified by SML; their steps are simple and their language more familiar. Of particular interest is their lucid discussion of correlations and spontaneous magnetization, and their new derivation of the transfer matrix formulation, which is the heart of the algebraic approach.

In brief outline, the problem is formulated algebraically as follows. Consider a square lattice consisting of M rows and N columns with a set of $N M$ particles of two types arranged on the vertices of the lattice. If we let only nearest-neighbor particles interact, with interaction energy $-J_{2}\left(-J_{1}\right)$ between like particles in rows (columns) and $+J_{2}\left(+J_{1}\right)$ between unlike particles in rows (columns) and assign a coordinate $\mu_{m, n}$ to the vertex at the intersection of the nth row and m th column, with values +1 or -1 depending on the type of particle, the Hamiltonian for the system in configuration $\left\{\mu_{11}, \cdots\right.$, $\left.\mu_{M N}\right\}$,

$$
\begin{align*}
H\left(\mu_{11}, \cdots, \mu_{M_{N}}\right)=- & J_{1}
\end{aligned} \begin{aligned}
& \sum \mu_{m, n} \mu_{m+1, n} \\
& -J_{2} \sum \mu_{m, n} \mu_{m, n+1} \tag{1}
\end{align*}
$$

defines the rectangular two-dimensional Ising model, and the problem is to calculate the partition function Z defined by

$$
\begin{equation*}
Z_{M N}=\sum_{\mu_{11}= \pm 1} \cdots \sum_{\mu_{M N}= \pm 1} e^{-\beta H\left(\mu_{12}, \cdots, \mu_{M N}\right)} \tag{2}
\end{equation*}
$$

where $\beta=\left(k_{B} T\right)^{-1}, k_{B}$ being Boltzmann's constant, and T the absolute temperature.
For boundary conditions one usually takes $\mu_{M+m, n}=\mu_{m, n}$ and $\mu_{m, N+n}=\mu_{m, n}$, so that the lattice
is assumed to be wrapped on a torus. In this case the sums in (1) are over n from 1 to N, and m from 1 to M. The toroidal boundary conditions will be used in the present work.

The reduction of $Z_{M N}$ to the transfer operator form is well known, we merely quote the result. For detailed derivations, see for example the book by Huang ${ }^{9}$ or SML.

The transfer operator V is defined by

$$
\begin{equation*}
V=\exp \left(K_{2} \sum_{n=1}^{N} \tau_{n}^{1} \tau_{n+1}^{1}\right) \exp \left(-K_{1}^{*} \sum_{n=1}^{N} \tau_{n}^{2}\right), \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
K_{i}=\beta J_{i}, \quad i=1,2, \tag{4a}
\end{equation*}
$$

K_{1}^{*} is related to K_{1} through

$$
\begin{equation*}
\tanh K_{1}^{*}=e^{-2 K_{1}} \tag{4b}
\end{equation*}
$$

and the operators $\tau_{n}^{i}, i=1,2$, satisfy the relations
$\left[\tau_{n}^{i}, \tau_{n}^{i}\right]_{-}=\tau_{n}^{i} \tau_{n}^{i},-\tau_{n^{\prime}}^{i} \tau_{n}^{i}=0$,
$\left[\tau_{n}^{i}, \tau_{n}^{i}\right]_{+}=\tau_{n}^{i} \tau_{n}^{i}+\tau_{n}^{i} \tau_{n}^{i}=0$,
for $i \neq j=1,2, n, n^{\prime}=1,2, \ldots, N$,
and
$\left(\tau_{n}^{i}\right)^{2}=I$ for $i=1,2, n=1,2, \cdots, N$,
with I the unit operator and 0 the null operator.
The first term in V arises from interactions in a row and the second from interactions between near-est-neighbor rows.

In terms of V, the partition function is given by

$$
\begin{equation*}
Z_{M N}=\left(2 \sinh 2 K_{1}\right)^{\frac{1}{2} M N} \operatorname{Tr}\left(V^{M}\right) . \tag{6}
\end{equation*}
$$

A common feature of the Onsager, Kaufman, and SML derivations is that they all compute the eigenvalues of the transfer operator. Kaufman actually computes all the eigenvalues and is thus able to write down the partition function for the finite lattice from

$$
\begin{equation*}
Z_{M N}=\left(2 \sinh 2 K_{1}\right)^{\frac{1}{M N}} \sum_{n=1}^{2^{N}} \lambda_{n}^{M} \tag{7}
\end{equation*}
$$

Of more interest, phase transition-wise, is the infinite lattice where it is easily shown that the free-energy per particle is given by

$$
\begin{align*}
& -\beta^{-1} \lim _{\substack{M, N \rightarrow \infty \\
(M / N=\text { ons } t)}}(M N)^{-1} \ln Z_{M N} \\
& =-(2 \beta)^{-1} \ln \left(2 \sinh 2 K_{1}\right)-\beta^{-1} \lim _{N \rightarrow \infty} N^{-1} \ln \lambda_{\max } \tag{8}
\end{align*}
$$

with $\lambda_{\text {max }}$ the largest eigenvalue of V.

[^38]For the infinite case it is therefore only necessary to find the largest eigenvalue, and this is done by Onsager and SML. Even so, one must in principle diagonalize V, and it is this part of the three calculations that is difficult, or at least complicated. In the present calculation, we do not find the eigenvalues of V. Instead we choose a representation of V in which the problem reduces to calculating traces of four-dimensional matrices of relatively simple structure. The calculation is given in the following section and the result obtained is Kaufman's expression for the finite problem. The passage to the infinite lattice can be followed in the manner suggested by Kaufman and is not included here. Our procedure, as a method for obtaining the infinite lattice result as well as the finite result, is, we feel, much less involved than the diagonalizing procedures of previous algebraic derivations. We remark also that our method can be used to evaluate the short- and long-range order (which are expressible as traces of operators). The calculations are straightforward and parallel closely those of SML so are not included here.

2. THE PARTITION FUNCTION

To express V in a more convenient form we define Fermi destruction and creation operators a_{n} and $a_{n}^{\dagger}(n=1,2, \cdots N)$, by

$$
\begin{align*}
& a_{n}+a_{n}^{\dagger}=\tau_{1}^{2} \tau_{2}^{2} \cdots \tau_{n-1}^{2} \tau_{n}^{3} \tag{9a}\\
& a_{n}-a_{n}^{\dagger}=i \tau_{1}^{2} \tau_{2}^{2} \cdots \tau_{n-1}^{2} \tau_{n}^{1} . \tag{9b}
\end{align*}
$$

In terms of these operators one can easily show that ${ }^{10}$

$$
\begin{equation*}
V^{M}=\frac{1}{2}(I+U) V_{+}^{M}+\frac{1}{2}(I-U) V_{-}^{M}, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
U=\prod_{n=1}^{N} \tau_{n}^{2}=\exp \left[i \pi \sum_{n=1}^{N}\left(a_{n}^{\dagger} a_{n}-1\right)\right] \tag{11}
\end{equation*}
$$

and

$$
\begin{align*}
V_{ \pm}=\prod_{n=1}^{N} \exp & {\left[K_{2}\left(a_{n+1}^{\dagger}-a_{n+1}\right)\left(a_{n}^{\dagger}+a_{n}\right)\right] } \\
& \times \prod_{n=1}^{N} \exp \left[-2 K_{1}^{*}\left(a_{n}^{\dagger} a_{n}-1\right)\right] \tag{12}
\end{align*}
$$

with the anticyclic boundary condition

$$
\begin{equation*}
a_{N+\imath}=-a_{t} \tag{13a}
\end{equation*}
$$

holding for V_{+}, and the cyclic boundary condition

$$
\begin{equation*}
a_{N+l}=a_{\imath} \tag{13b}
\end{equation*}
$$

${ }^{10}$ The steps follow closely those of Kaufman.
holding for V_{-}, and in deriving (10) we have made use of the fact that $P_{ \pm}=\frac{1}{2}(I \pm U)$ are projection operators (which follows from $U^{2}=I$), and act on orthogonal subspaces (i.e., $P_{+} P_{-}=0$). Equation (12) was obtained by SML by a different method.

In the remainder of this section we will focus our attention on the V_{+}term in (10). The steps in the calculation of the remaining three terms in (10) are similar to those given below and are summarized briefly at the end.

To simplify V_{+}further we follow SML and transform to running wave operators through

$$
\begin{equation*}
a_{n}=N^{-\frac{1}{i}} e^{i \pi / 4} \sum_{q} e^{i \varepsilon n} \eta_{e} \tag{14}
\end{equation*}
$$

where the anticyclic condition (13a) requires that

$$
\begin{equation*}
q= \pm(2 j-1) \pi / N \quad j=1, \cdots, N / 2 \tag{15a}
\end{equation*}
$$

[the cyclic condition (13b) requires that
$q=0, \pi, \pm 2 j \pi / N, \quad j=1,2, \cdots, N / 2-1]$
and for convenience we have chosen N to be even. Direct substitution of (14) into (12) gives

$$
\begin{equation*}
V_{+}=\prod_{0<a<\pi} V_{a} \tag{16}
\end{equation*}
$$

where in terms of operators $\Sigma_{q}^{1}, \Sigma_{q}^{2}$, (and Σ_{q}^{3} for completeness)

$$
\begin{gather*}
\Sigma_{q}^{1}=\eta_{q}^{\dagger} \eta_{q}+\eta_{-q}^{\dagger} \eta_{-q}-I, \\
\Sigma_{a}^{2}=\eta_{-a} \eta_{q}+\eta_{q}^{\dagger} \eta_{-a}^{\dagger}, \tag{17}\\
\Sigma_{a}^{3}=i\left(\eta_{q}^{\dagger} \eta_{-a}^{\dagger}-\eta_{-q} \eta_{q}\right), \\
V_{q}=\exp \left\{2 K_{2}\left[\cos q \Sigma_{q}^{1}-\sin q \Sigma_{q}^{2}\right]\right\} \\
\times \exp \left\{-2 K_{1}^{*} \Sigma_{a}^{1}\right\} \tag{18}
\end{gather*}
$$

We will make use of the commutation relations for the Σ_{q}^{i} operators
$\left[\Sigma_{q}^{i}, \Sigma_{q}^{i}\right]_{-}=-2 i \delta_{q q}, \Sigma_{q}^{k},(i j k) \quad$ cyclic (123)
and $\quad\left[\Sigma_{a}^{i}, \Sigma_{e}^{i}\right]_{+}=0$ for $i \neq j$.
These follow directly from (17) and the Fermi anticommutation relations for the η_{q}-operators. We remark in passing that the sequence of equations (16)-(18)-(19) was obtained originally by Onsager using a slightly more involved method.

In all previous algebraic derivations, $V_{ \pm}$were diagonalized (simultaneously because of their commutability). Let us show that for the purpose of computing the trace, the most convenient representation is not the diagonal one but one based on the occupation number representation of the $\eta_{a^{-}}$ Fermi operators. Thus, since the eigenvalues of
$\eta_{ \pm q}^{\dagger} \eta_{ \pm q}$ are 0 and 1 (with equal degeneracy), the eigenvalues of Σ_{a}^{1} are $1,-1,0,0$ (equal degeneracy). A representation of the Σ-operators in which Σ_{e}^{1} is diagonal is therefore [from (19)]

$$
\begin{array}{r}
\Sigma_{q}^{i}=I_{4} \otimes \cdots \otimes I_{4} \otimes \sigma^{i} r^{+} \otimes I_{4} \otimes \cdots \otimes I_{4}, \\
i=1,2,3 \tag{20}
\end{array}
$$

where

$$
\sigma^{i}=\left[\begin{array}{cc}
\tau^{i} & 0_{2} \tag{21}\\
0_{2} & \tau^{i}
\end{array}\right], \quad r^{+}=\left[\begin{array}{cc}
I_{2} & 0_{2} \\
0_{2} & 0_{2}
\end{array}\right]
$$

τ^{i} are the conventional Pauli matrices

$$
\tau^{1}=\left[\begin{array}{rr}
1 & 0 \tag{22}\\
0 & -1
\end{array}\right], \quad \tau^{2}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad \tau^{3}=\left[\begin{array}{rr}
0 & -i \\
i & 0
\end{array}\right]
$$

I_{4} and I_{2} are the four- and two- dimensional unit matrices, respectively, 0_{2} is the two-dimensional null matrix, and in the direct product (denoted by \otimes), there are $N / 2$ terms, with the $\sigma^{i} r^{+}$occuring in the j th ($q=2 j-1$) place.

Using the property

$$
\begin{equation*}
(A \otimes B)(C \otimes D)=(A C) \otimes(B D) \tag{23}
\end{equation*}
$$

of direct product, we then have
where

$$
\begin{array}{r}
V_{p+}=\exp \left\{2 K_{2}\left[\cos (p+) \sigma_{+}^{1}-\sin (p+) \sigma_{+}^{2}\right]\right\} \\
\times \exp \left\{-2 K_{1}^{*} \sigma_{+}^{2}\right\} \tag{25}
\end{array}
$$

and

$$
\begin{equation*}
\sigma_{+}^{i}=\sigma^{i} r^{+} \tag{26}
\end{equation*}
$$

If we then use the property

$$
\begin{equation*}
\operatorname{Tr}(A \otimes B)=\operatorname{Tr}(A) \operatorname{Tr}(B) \tag{27}
\end{equation*}
$$

we have

$$
\begin{equation*}
\operatorname{Tr}\left(V_{+}^{M}\right)=\prod_{i=1}^{N / 2} \operatorname{Tr}\left(V_{2 i-1}^{M}\right) \tag{28}
\end{equation*}
$$

The problem has now been reduced to the evaluation of traces of four-dimensional matrices with relatively simple structure. Let us consider V_{p} (p will henceforth be used for $p+$). Since the σ^{i} matrices satisfy the commutation relations

$$
\begin{equation*}
\left[\sigma_{+}^{i}, \sigma_{+}^{i}\right]=-2 i \sigma_{+}^{k} \quad(i j k) \text { cyclic }(123) \tag{29}
\end{equation*}
$$

V_{p} can be written in the form

$$
\begin{equation*}
V_{\mathcal{D}}=\exp \left(\sum_{i=1}^{3} c_{\nu}^{i} \sigma_{+}^{i}\right) \tag{30}
\end{equation*}
$$

If we then use the anticommutation relations

$$
\begin{equation*}
\left[\sigma_{+}^{i}, \sigma_{+}^{i}\right]_{+}=2 \delta_{i r} r^{+} \tag{31}
\end{equation*}
$$

expansion of the exponential (30) gives
$V_{z}=r^{-}+r^{+} \cosh \gamma_{p}+\left(\sum_{i=1}^{3} c_{p}^{i} \sigma_{+}^{i}\right) \frac{\sinh \gamma_{p}}{\gamma_{p}}$,
where

$$
\begin{equation*}
r^{-}=I_{4}-r^{+} \tag{33}
\end{equation*}
$$

and γ_{p} is defined by

$$
\begin{equation*}
\gamma_{p}^{2}=\sum_{i=1}^{3}\left(c_{p}^{i}\right)^{2} \tag{34}
\end{equation*}
$$

If we also expand the exponentials in (18) in a similar manner, we obtain

$$
\begin{align*}
& V_{p}=r^{-} \\
& \quad+r^{+}\left[\cosh 2 K_{2} \cosh 2 K_{1}^{*}-\sinh 2 K_{2} \sinh 2 K_{1}^{*} \cos p\right] \\
& +\sigma_{+}^{1}\left[\sinh 2 K_{2} \cosh 2 K_{1}^{*} \cos p-\sinh 2 K_{1}^{*} \cosh 2 K_{2}\right] \\
& +\sigma_{+}^{2}\left[-\sinh 2 K_{2} \cosh 2 K_{1}^{*} \sin p\right] \\
& +\sigma_{+}^{3}\left[\sinh 2 K_{1}^{*} \sinh 2 K_{2} \sin p\right] . \tag{35}
\end{align*}
$$

This expression must be identical with (32), so equating coefficients of r^{+}gives the connection
$\cosh \gamma_{D}=\cosh 2 K_{2} \cosh 2 K_{1}^{*}$

$$
\begin{equation*}
-\sinh 2 K_{2} \sinh 2 K_{1}^{*} \cos p \tag{36}
\end{equation*}
$$

between the c_{p}^{i} parameters in (30) and K_{2}, K_{1}^{*}, and p. It turns out that (36) is the only relation needed to evaluate the trace (28). The steps needed are as follows. From (30) we have

$$
\begin{align*}
& \left(V_{p}\right)^{M}=\exp \left(\sum_{i=1}^{3}\left(M c_{p}^{i}\right) \sigma_{+}^{i}\right) \\
& \quad=r^{-}+r^{+} \cosh \left(M \gamma_{p}\right)+\left(\sum_{i=1}^{3} c_{p}^{i} \sigma_{+}^{i}\right) \frac{\sinh \left(M \gamma_{p}\right)}{\gamma_{p}} \tag{37}
\end{align*}
$$

and recalling expressions (21) and (33) for r^{+}and r^{-}, and noting that $\operatorname{Tr}\left(\sigma_{+}^{i}\right)=0$, we have
$\operatorname{Tr}\left(V_{p}^{M}\right)=2\left[1+\cosh \left(M \gamma_{p}\right)\right]=4 \cosh ^{2}\left(\frac{1}{2} M \gamma_{p}\right)$.
To evaluate $\operatorname{Tr}\left(U V_{+}^{M}\right)$ in (10) we use the representation (20) to get

$$
\begin{equation*}
U_{+}=\underset{p^{+}}{\otimes}\left(-e^{i \times \sigma^{\prime}}\right)=\underset{p+}{\otimes}\left(r^{+}-r^{-}\right) \tag{39}
\end{equation*}
$$

and then from (23) and (27)

$$
\begin{equation*}
\operatorname{Tr}\left(U V_{+}^{M}\right)=\prod_{p+} \operatorname{Tr}\left[\left(r^{+}-r^{-}\right) V_{p+}^{M K}\right] \tag{40}
\end{equation*}
$$

where, using $r^{+} r^{-}=0_{4}=r^{-} \sigma_{+}^{i},\left(r^{+}\right)^{2}=r^{+}$, and (37),
$\operatorname{Tr}\left[\left(r^{+}-r^{-}\right) V_{p+}^{M}\right]=2\left[-1+\cosh \left(M \gamma_{p}\right)\right]$

$$
\begin{equation*}
=4 \sinh ^{2}\left(\frac{1}{2} M \gamma_{p}\right) . \tag{41}
\end{equation*}
$$

To evaluate the corresponding minus quantities $\operatorname{Tr}\left(V^{M}\right)$ and $\operatorname{Tr}\left(U V^{M}\right)$ in (10), one uses the representation (20) with $\sigma^{i} r^{-}$in place of $\sigma^{i} r^{+}$[to preserve the orthogonality of the two terms in (10)]. The above calculation then goes through with essentially just a minus sign in place of a plus [although some special care must be taken with the $q=0$ and $q=\pi$ terms (15b) arising from the cyclic boundary conditions (13b).]

If we now define γ_{k} to be the positive solution of Eq. (36), that is, the positive solution of ($p=k \pi / N$) $\cosh \gamma_{k}=\cosh 2 K_{2} \cosh 2 K_{1}^{*}-\sinh 2 K_{2}$

$$
\begin{equation*}
\times \sinh 2 K_{1}^{*} \cos \left(\frac{k \pi}{N}\right) \quad k=0,1, \cdots \tag{42}
\end{equation*}
$$

and note that $\gamma_{2 N-k}=\gamma_{k}$ for $k=0,1, \cdots, N$, we have finally, after combining (10), (28), (38), (40), and (41) and the corresponding minus results, the Kaufman expression for the partition function of the finite lattice,

$$
\begin{align*}
Z_{M N}= & \left(2 \sinh 2 K_{1}\right)^{\frac{3}{M N}} \operatorname{Tr}\left(V^{M}\right) \\
= & \frac{1}{2}\left(2 \sinh 2 K_{1}\right)^{\frac{3 M N}{}} \\
& \times\left\{\prod_{i=1}^{N} 2 \cosh \left(\frac{M \gamma_{2 j-1}}{2}\right)+\prod_{i=1}^{N} 2 \sinh \left(\frac{M \gamma_{2 i-1}}{2}\right)\right. \\
& \left.+\prod_{i=1}^{N} 2 \cosh \left(\frac{M \gamma_{2 i}}{2}\right)+\prod_{i=1}^{N} 2 \sinh \left(\frac{M \gamma_{2 i}}{2}\right)\right\} . \tag{43}
\end{align*}
$$

The partition function for the infinite lattice can be obtained straightforwardly from (43) in the manner suggested by Kaufman. The reader is referred to Kaufman's article for details.

ACKNOWLEDGMENT

The author is grateful to Professor H. Suhl for the hospitality extended to him at the University of California, San Diego.

Momentum-Transfer Theorem for Inelastic Processes

E. Gerjuot
University of Pittsburgh, Pittsburgh, Pennsylvania

(Received 12 March 1965)

Abstract

Recently it has been shown that for potential scattering, the well-known optical theorem-relating the total cross section to the imaginary part of the forward scattering amplitude-can be generalized to yield a "momentum-transfer cross-section theorem." The present paper further generalizes the previous potential scattering result. Specifically, it appears that the momentum-transfer cross-section theorem is valid also for many-particle systems, wherein inelastic processes occur. Although this last assertion probably holds quite generally, a proof is given only for the collisions of electrons with atomic hydrogen. The proof takes into account electron indistinguishability, as well as the possibility that the incident electron ionizes the atom, but assumes the forces are not spin-dependent.

I. INTRODUCTION AND SUMMARY

RECENTLY ${ }^{1}$ I have shown that for potential scattering, the momentum-transfer cross section

$$
\begin{equation*}
\sigma_{d}=\int d \mathbf{n}^{\prime}\left(1-\mathbf{n} \cdot \mathbf{n}^{\prime}\right)\left|A\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right)\right|^{2} \tag{1}
\end{equation*}
$$

can be expressed in the form

$$
\begin{equation*}
\sigma_{d}=\frac{1}{2 E} \int d \mathbf{r} \Psi^{*} \frac{\partial V}{\partial z} \Psi \tag{2}
\end{equation*}
$$

In the above equations: $A\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right)$ is the amplitude for elastic scattering from initial direction \mathbf{n} to final direction $n^{\prime} ; E=\hbar^{2} k^{2} / 2 m$ is the kinetic energy; the Hamiltonian is

$$
\begin{equation*}
H=T+V=\left(-\hbar^{2} / 2 m\right) \nabla^{2}+V(\mathbf{r}) \tag{3}
\end{equation*}
$$

the potential $V(\mathbf{r})$ is not necessarily spherically symmetric, i.e., $V(\mathbf{r})$ need not equal $V(r)$; the wavefunction Ψ satisfies

$$
\begin{equation*}
(H-E) \Psi=0 \tag{4}
\end{equation*}
$$

subject to the boundary condition (when \mathbf{n} is along the z direction)

$$
\begin{equation*}
\Psi=e^{i k z}+\Phi(\mathbf{r}), \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\lim _{r \rightarrow \infty \| \mathbf{n}} \Phi=A\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right) e^{i k \tau} r^{-1} ; \tag{6}
\end{equation*}
$$

when n is not parallel to $z, \partial V / \partial z$ in Eq. (2) is replaced by $\mathrm{n} \cdot \operatorname{grad} V$.

For potential scattering the result (2) in many respects is a generalization of the optical theorem
$\sigma=\int d \mathbf{n}^{\prime}\left|A\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right)\right|^{2}=\frac{4 \pi}{k} \operatorname{Im} A(\mathbf{n} \rightarrow \mathbf{n})$.

[^39]It is known, however, that the optical theorem remains valid in many-particle collisions involving inelastic processes. Similarly, it appears that the momentum-transfer cross-section theorem (2) remains valid even when inelastic processes can occur. Of course, some modification of the right side of (2) is necessary in a many-particle collision. Also, one must generalize the definition (1) of the momen-tum-transfer cross section, σ_{d}.

Because a proof of the momentum-transfer crosssection theorem for arbitrarily complicated colliding systems would be awkward and hard to follow (mainly because the notation gets correspondingly complicated), I shall content myself here with carrying out the proof for the simple case of $e-H$ scattering. In this case the momentum-transfer theorem has the form

$$
\begin{equation*}
\sigma_{d}=\frac{1}{2 E_{0}^{\prime}} \int d \mathbf{r} \Psi^{*} \frac{\partial V}{\partial z_{1}} \Psi, \tag{8}
\end{equation*}
$$

where $E_{0}=\hbar^{2} k_{0}^{2} / 2 m$ is the incident kinetic energy; z_{1} is the z coordinate of one of the two electrons in the system; and the quantities V, Ψ, σ_{d} are defined, respectively, by Eqs. (12), (14), and (56) below. This proof for $e-\mathrm{H}$ scattering makes it fairly obvious that a similar momentum-transfer theorem holds for electron scattering by more complicated atoms, and makes it plausible that a corresponding momen-tum-transfer theorem continues to hold for collisions between more complex aggregates of fundamental particles, e.g., for molecule-molecule scattering.

In connection with the above paragraph, the following remarks, concerning assumptions made in the proof, should be noted. The proof includes the effects of particle indistinguishability and electron exchange, i.e., the wavefunction is antisymmetric under exchange of electron space and spin coordinates. However, the spin-dependent part of the wavefunction is factored out, i.e., it is assumed that
all components of the total spin are separately conserved, which in turn implies that the Hamiltonian is spin independent. There is little doubt that a momentum-transfer theorem remains valid for spindependent interactions, but carrying through the proof would require taking into account the properties of the eigenfunctions under time reversal; considering only the spatially dependent part of the wavefunction, as is done here, avoids this complication. Another complication which is ignored in the following proof of (8) is the effects of Coulomb forces on the asymptotic behavior of the continuum wavefunction solving the many-particle Schrödinger equation. More precisely, although ionization is included in the possible inelastic processes contributing to momentum transfer, it is assumed that the Hamiltonian is effectively a free-particle Hamiltonian when the particles are infinitely separated. It is easily seen that this assumption is inconsequential for (8) when the free-particle plane waves can be replaced by Coulomb functions as, e.g., in excitation of H^{-}by electrons, or ionization of H^{-}by a neutral particle. In more complex situations, e.g., ionization of H^{-}or H by electrons, there is no reason to think the momentum-transfer theorem fails, but it must be admitted that the detailed asymptotic behavior of the wavefunction has not been examined in circumstances such as these, where two or more charged particles go out to infinity in the center of mass system. Finally, the proof wholly ignores radiative processes.

The possible utility of (8) has been discussed previously. ${ }^{1}$ Bearing on its utility, and relevant also to the discussion of the preceding paragraph, is the fact that the right side of (8) apparently diverges whenever electrons are incident on ions, e.g., H^{-}. The source of the divergence can be understood by examining elastic scattering in a fixed Coulomb potential $V=C / r$. Substituting (5) in (2), which now is applicable, one sees that integration over angles annihilates the matrix element of $\partial V / \partial z=$ $-C \cos \theta / r^{2}$ between $e^{i k z}$ and $e^{-i k z}$. The matrix element of $\partial V / \partial z$ between $e^{-i k z}$ and Φ need not vanish, however, and in this matrix element the integral over r is divergent at $r=\infty$. Moreover, this divergence is to be expected, because for Coulomb scattering, directly from the fundamental definition (1),

$$
\begin{equation*}
\sigma_{d} \approx \int_{0}^{\pi} d \theta \sin \theta(1-\cos \theta) \csc ^{4} \frac{1}{2} \theta \tag{9}
\end{equation*}
$$

diverges logarithmically at $\theta=0$.

[^40]The following remarks are also worth noting. The proof of (8) given here indicates that in a sense the momentum-transfer cross-section theorem is a gen-eralization-to continuum eigenfunctions-of the socalled hypervirial theorems. ${ }^{2}$ In fact the proof of (8) is based on a wholly time-independent (wherein transition probabilities are never explicitly introduced) treatment ${ }^{3}$ of many-particle collisions involving rearrangement. In this treatment the cross section is computed, using Green's theorem, from the flow of probability current across the surface at infinity in the $3 n$-dimensional space spanned by $\mathbf{r}_{1}, \cdots, \mathbf{r}_{n}$, where the collision involves n particles in all, and r_{i} is the position vector of the i th particle. The time-independent treatment has the advantage that it makes explicit many of the mathematical assumptions (e.g., those mentioned in the two preceding paragraphs) employed in proving Eq. (8).

II. REVIEW OF TIME-INDEPENDENT FORMALISM

Especially when ionization can occur, to make the proof of the momentum-transfer theorem understandable, it is desirable to review some results of the time-independent treatment. As explained above, I confine my attention to the scattering of electrons by atomic hydrogen in the ground $1 s$ state ϕ_{0}. The atomic hydrogen eigenfunction $\phi_{i}(\mathbf{r})$, of energy ϵ_{i}, obeys

$$
\begin{equation*}
\left[\left(-\hbar^{2} / 2 m\right) \nabla^{2}-e^{2} / r\right] \varphi_{i} \overline{\mathrm{I}}=\epsilon_{i} \varphi_{j} \tag{10}
\end{equation*}
$$

The spatially dependent part of the total wavefunction describing the collision is ${ }_{-}^{*} \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$, which satisfies Eq. (4) with

$$
\begin{align*}
H & =\frac{-\hbar^{2}}{2 m} \nabla_{1}^{2}-\frac{\hbar^{2}}{2 m} \nabla_{2}^{2}+V\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right), \tag{11}\\
V & =\frac{-e^{2}}{r_{1}}-\frac{e^{2}}{r_{2}}+\frac{e^{2}}{\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|} \tag{12}
\end{align*}
$$

and obeys

$$
\begin{equation*}
\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)= \pm \Psi\left(\mathbf{r}_{2}, \mathbf{r}_{1}\right) . \tag{13}
\end{equation*}
$$

The upper sign in Eq. (13) applies to singlet scattering, the lower sign to triplet scattering. In what follows, I shall use the plus sign only, but it is easily verified that the proof can be just as readily carried through for triplet scattering.

Outgoing Current and the Total Cross Section

Ignoring the long-range character of the potential, the singlet Ψ can be written in the form
$\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=e^{i k_{0 \mathrm{n}} \cdot \mathbf{r}_{\mathbf{1}}} \phi_{0}\left(\mathbf{r}_{2}\right)+e^{i k_{00} \cdot \mathrm{r}_{\mathbf{r}}} \phi_{0}\left(\mathbf{r}_{1}\right)+\Phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$,

[^41]where $\Phi\left(r_{1}, r_{2}\right)$ is everywhere outgoing and obeys
\[

$$
\begin{equation*}
\Phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=\Phi\left(\mathbf{r}_{2}, \mathbf{r}_{1}\right) . \tag{15}
\end{equation*}
$$

\]

The everywhere-outgoing property implies

$$
\begin{equation*}
\lim _{r_{2} \rightarrow \infty \mid\left(\mathfrak{a}^{\prime}\right.} \int d \mathbf{r}_{2} \phi_{j}^{*}\left(\mathbf{r}_{2}\right) \Phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=A_{i}\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right) \frac{e^{i k_{i} r_{2}}}{r_{1}} \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
E=\hbar^{2} k_{0}^{2} / 2 m+\epsilon_{0}=\hbar^{2} k_{i}^{2} / 2 m+\epsilon_{i} \tag{17}
\end{equation*}
$$

It is easily seen that, as one expects for singlet scattering,

$$
\begin{equation*}
A_{i}=f_{i}+g_{i} \tag{18}
\end{equation*}
$$

where f_{i} and g_{i} are, respectively, the ordinary and exchange amplitudes for collisions leaving the atom in the state ϕ_{i}.

Equation (16) yields no information about the behavior of Φ when r_{1}, r_{2} each become infinite. However, the everywhere-outgoing property also implies ${ }^{3}$

$$
\begin{align*}
& \lim _{\mathbf{n}_{\mathbf{a}^{\prime}}} \Phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=A\left(\mathbf{n} \rightarrow \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}\right) \frac{e^{i K \%}}{r^{5 / 2}}, \tag{19}
\end{align*}
$$

where

$$
\begin{align*}
E & =\frac{\hbar^{2} K^{2}}{2 m}=\frac{\hbar^{2} k_{1}^{\prime 2}}{2 m}+\frac{\hbar^{2} k_{2}^{\prime 2}}{2 m}, \tag{20}\\
r & =\left(r_{1}^{2}+r_{2}^{2}\right)^{\frac{3}{2}}=r_{1}\left(1+q^{2}\right)^{\frac{1}{2}}, \tag{21}\\
\mathbf{k}_{1}^{\prime} & =K r_{1} \mathbf{n}_{1}^{\prime} / r=K\left(1+q^{2}\right)^{-\frac{1}{2}} \mathrm{n}_{1}^{\prime}, \tag{22}\\
\mathbf{k}_{2}^{\prime} & =K r_{2} \mathbf{n}_{2}^{\prime} / r=K q\left(1+q^{2}\right)^{-\frac{1}{n_{2}^{\prime}}}
\end{align*}
$$

The total cross section, including ionization as well as excitation, is 3

$$
\begin{equation*}
\sigma=\frac{m}{2 \hbar k_{0}} \int_{\infty} d S v \cdot \mathrm{~J} \tag{23}
\end{equation*}
$$

integrated over the surface of the six dimensional sphere at infinityl in r_{1}, r_{2} space, where the sixdimensional current vector J has components

$$
\begin{align*}
& \mathrm{J}_{1}=(\hbar / 2 m i)\left(\Phi^{*} \nabla_{1} \Phi-\Phi \nabla_{1} \Phi^{*}\right), \tag{24}\\
& \mathrm{J}_{2}=(\hbar / 2 m i)\left(\Phi^{*} \nabla_{2} \Phi-\Phi \nabla_{2} \Phi^{*}\right) .
\end{align*}
$$

In (24) J_{1} represents the three components of J along $i_{1}, j_{1}, \mathbf{k}_{1}$, i.e., along the usual right-handed basis defining the r_{1} subspace of r_{1}, r_{2} space. Similarly, J_{2} represents the three components of J along $\mathbf{i}_{2}, \mathbf{j}_{2}, \mathbf{k}_{2}$. Correspondingly, in (23) the outward drawn
six-dimensional normal to the sphere at infinity has components

$$
\begin{align*}
& \boldsymbol{v}_{1}=\mathbf{r}_{1} / r=\left(r_{1} / r\right) \mathbf{n}_{1}^{\prime}, \tag{25}\\
& \boldsymbol{\nu}_{2}=\mathbf{r}_{2} / r=\left(r_{2} / r\right) \mathfrak{n}_{2}^{\prime} .
\end{align*}
$$

Excitation and Ionization Cross Sections

The result (23) is basic to the time-independent treatment of many-particle collisions and is not evident. In fact, Eq, (23) amounts to accepting the postulate that (24) represents the current operator conserving probability flux in many-particle collisions, just as the usual formula (7) for the total cross section in potential scattering implies acceptance of the usual one-particle current operator [of which Eq. (24) is the obvious generalization]. Nevertheless, the correctness of (23) is not in question since it can be shown that the accepted expressions for the rates of excitation and ionization follow from (23).

To amplify this last assertion, note that on the sphere at infinity the surface elements $d S$ (and corresponding v) are of two essentially different types, namely: surface elements $d S$ where one of r_{1}, r_{2} is infinite, but not the other; and those $d S$ forming a manifold of higher dimensionality than the first type, where r_{1} and r_{2} are each infinite. It has been proved ${ }^{3}$ that the contribution to (23) from surface elements of the first type, with $r_{1} \rightarrow \infty$ and r_{3} finite, reduces to

$$
\begin{equation*}
\frac{m}{2 \hbar k_{0}} \sum_{i} \int_{\infty} d S_{1} \mathbf{n}^{\prime} \cdot \mathbf{J}_{i}^{\prime} \tag{26}
\end{equation*}
$$

integrated over the surface S_{1} of the three-dimensional sphere at infinity in r_{1}-space, where

$$
\begin{equation*}
J_{i}^{\prime}=(\hbar / 2 m i)\left(Z_{i}^{*} \nabla_{1} Z_{i}-Z_{i} \nabla_{1} Z_{i}^{*}\right) \tag{27}
\end{equation*}
$$

and

$$
\begin{equation*}
Z_{i}\left(\mathbf{r}_{1}\right)=\int d \mathbf{r}_{2} \phi_{i}^{*}\left(\mathbf{r}_{2}\right) \Phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \tag{28}
\end{equation*}
$$

integrated over all \mathbf{r}_{2}. Of course in (26) \mathbf{n}^{\prime} is the normal to $d S_{1}$, and $J_{i}^{\prime}\left(\mathrm{r}_{1}\right)$ is evaluated at infinite $\mathbf{r}_{1}=r_{1} \mathbf{n}^{\prime}$. Using (16), therefore, (26) yields

$$
\begin{equation*}
\sum_{i} \frac{k_{i}}{2 k_{0}} \int d \mathbf{n}^{\prime}\left|A_{j}\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right)\right|^{2}=\frac{1}{2} \sigma_{\mathrm{ex}}, \tag{29}
\end{equation*}
$$

where $\sigma_{\text {ex }}$ obviously is the total cross section for excitation, including elastic scattering ($j=0$). The left side of (29) is only half σ_{ox} because (26) has not included the contribution to (23) from surface elements with $r_{2} \rightarrow \infty$ and r_{1} finite; by virtue of (15) the contributions from $r_{2} \rightarrow \infty, r_{2}$ finite and
$r_{2} \rightarrow \infty, r_{1}$ finite must be equal. Correspondingly, one sees that the right side of (23), which must represent the total outgoing current divided by the incident current per unit area is correctly multiplied by $\left(2 \hbar k_{0} / m\right)^{-1}$, because each of the first two terms on the right side of (14) corresponds to an incident current density $\hbar k_{0} / m$.

The contribution to (23) from surface elements $d S$ where r_{1} and r_{2} are each infinite must be the ionization cross section $\sigma_{\text {ion }}$. In fact, for K real [$E>0$ in (17) and therefore capable of ionizing the atom], this contribution is, using Eqs. (19) and (21)-(25),

$$
\begin{align*}
\sigma_{\mathrm{ion}} & =\frac{1}{2 k_{0}} \int \frac{d S}{r^{5}} K\left|A\left(\mathbf{n} \rightarrow \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}\right)\right|^{2} \tag{30a}\\
& =\frac{1}{2 k_{0}} \int d k_{2}^{\prime} d \mathbf{n}_{1}^{\prime} d \mathbf{n}_{2}^{\prime} \frac{k_{2}^{\prime 2} k_{1}^{\prime}}{K^{3}}\left|A\left(\mathbf{n} \rightarrow \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}\right)\right|^{2}, \tag{30b}
\end{align*}
$$

where I have used ${ }^{3}$

$$
\begin{equation*}
d S=\left[r^{5} q^{2} /\left(1+q^{2}\right)^{3}\right] d q d \mathbf{n}_{1}^{\prime} d \mathbf{n}_{2}^{\prime} \tag{31}
\end{equation*}
$$

The right side of Eq. (30b), which still is subject to Eq. (20), is not altered in value if one multiplies by $\delta\left(E^{\prime}-E\right)$ and then integrates over an infinitesimal range $d E^{\prime}$ about $E^{\prime}=E$. Thus, using Eq. (20) to find $d E^{\prime}$ in terms of $d k_{1}^{\prime}$, Eq. (30b) becomes

$$
\begin{align*}
& \sigma_{\text {ion }}=\frac{1}{2 k_{0}} \frac{\hbar^{2}}{m K^{3}} \int d \mathbf{k}_{1}^{\prime} d \mathbf{k}_{2}^{\prime} \delta\left(E^{\prime}-E\right) \\
& \times\left|A\left(\mathbf{n} \rightarrow \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}\right)\right|^{2}, \tag{32}
\end{align*}
$$

where now $\mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}$ range over all real values, with E^{\prime} defined by the right side of Eq. (20).

Equation (32) is the desired expression for $\sigma_{\text {ion }}$. When the symmetry requirements of particle indistinguishability are ignored, e.g., when the second term on the right side of (14) is dropped in the definition of Ψ, it can be seen that ${ }^{3}$

$$
\begin{align*}
& A\left(\mathbf{n} \rightarrow \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}\right)=\left(\frac{2 m}{\hbar^{2}}\right)^{3} \frac{e^{-3 i \pi / 4}}{2 E^{\frac{1}{3}}}\left(\frac{E^{\frac{1}{2}}}{2 \pi\left(2 m / \hbar^{2}\right)^{\frac{1}{3}}}\right)^{5 / 2} \\
& \times T\left(\mathbf{n} \rightarrow \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}\right), \tag{33}
\end{align*}
$$

where T is the usual transition amplitude

$$
\begin{equation*}
T(i \rightarrow f)=\int \Psi_{f}^{(-)} * V_{i} \psi_{i} \tag{34}
\end{equation*}
$$

from initial to final states. In this unsymmetrized case, therefore, realizing that the factor $\frac{1}{2}$ must be dropped because now the incident current density is only $\hbar k_{0} / m$, Eq. (32) takes the familiar form

$$
\begin{align*}
& \sigma_{\mathrm{ion}}=\frac{m}{\hbar k_{0}} \frac{2 \pi}{\hbar} \frac{1}{(2 \pi)^{6}} \int d \mathbf{k}_{1}^{\prime} d \mathbf{k}_{2}^{\prime} \delta\left(E^{\prime}-E\right) \\
& \times\left|T\left(\mathbf{n} \rightarrow \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}\right)\right|^{2} . \tag{35}
\end{align*}
$$

In the symmetrized case, where all terms in Eq. (14) are retained, one also can retain Eq. (33) in which event Eq. (35) again holds provided $\frac{1}{2}$ is restored.

III. PROOF OF MOMENTUM-TRANSFER THEOREM

With the foregoing results in hand, the desired momentum-transfer cross-section theorem can be derived. As in the simpler case of potential scattering ${ }^{1}$

$$
\begin{equation*}
-\int d \mathbf{r}(H \Psi)^{*} p_{1 z} \Psi+\int d \mathbf{r} \Psi^{*} p_{1 z} H \Psi=0 \tag{36}
\end{equation*}
$$

where $\Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)$ is the function defined by Eqs. (14) and (15); Eq. (11) defines H; $p_{1 z}=(\hbar / i) \partial / \partial z_{1}$ is the z component of the momentum of particle 1 ; the z direction now is supposed to coincide with the incident direction n ; and $d \mathrm{r} \equiv d \mathrm{r}_{1} d \mathrm{r}_{2}$ signifies integration over all r_{1}, r_{2}. Again as previously, ${ }^{1}$ to keep the integrals in (36) convergent, the integration volume may at first be supposed to equal the interior of a six-dimensional sphere (in $\mathbf{r}_{1}, \mathbf{r}_{\mathbf{2}}$ space) of finite though very large radius. Whatever the integration volume, Eq. (36) is true because Ψ satisfies Eq. (4).

Using (11), Eq. (36) becomes

$$
\begin{array}{r}
\frac{-\hbar^{2}}{2 m} \int d \mathbf{r}\left\{\Psi^{*}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right) \frac{\partial \Psi}{\partial z_{1}}-\left[\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right) \Psi\right]^{*} \frac{\partial \Psi}{\partial z_{1}}\right\} \\
+\int d \mathbf{r} \Psi^{*} \frac{\partial V}{\partial z_{1}} \Psi=0 \tag{37}
\end{array}
$$

with V given by (12). The next step is to substitute (14) into the first integral of Eq. (37), thereby obtaining 18 independent pairs of terms under the integral sign. Most of these pairs vanish, however. For example,

$$
\begin{aligned}
\int d \mathbf{r} & \left\{e^{-i k_{\mathrm{on}} \cdot \mathrm{r}_{\mathrm{r}}} \phi_{0}^{*}\left(r_{2}\right) \nabla_{1}^{2} \frac{\partial}{\partial z_{1}} e^{i k_{0 \mathrm{n}} \cdot \mathrm{r}_{\mathrm{r}}} \phi_{0}\left(r_{2}\right)\right. \\
& \left.-\left[\frac{\partial}{\partial z_{1}} e^{i k_{\mathrm{on}} \cdot \mathrm{r}_{1}} \phi_{0}\left(r_{2}\right)\right] \nabla_{1}^{2} e^{-i k_{\mathrm{on}} \cdot \mathrm{r}_{\mathbf{r}}} \phi_{0}^{*}\left(r_{2}\right)\right\}=0
\end{aligned}
$$

because

$$
\begin{equation*}
\left(\nabla_{1}^{2}+k_{0}^{2}\right) e^{ \pm i k_{\mathrm{o}} \mathrm{n} \cdot \mathrm{r}_{1}}=0 . \tag{38}
\end{equation*}
$$

Also, holding r_{2} fixed and employing Green's theorem in the three-dimensional r_{1} space, one sees that

$$
\begin{aligned}
\int d \mathbf{r}_{1} d \mathbf{r}_{2} & \left\{e^{-i k_{0} \cdot r_{\mathbf{r}}} \phi_{0}^{*}\left(r_{1}\right) \nabla_{1}^{2} \frac{\partial}{\partial z_{1}} e^{i k_{0 \mathbf{n}} \cdot \mathrm{r}_{\mathbf{r}}} \phi_{0}\left(r_{2}\right)\right. \\
& \left.-\left[\frac{\partial}{\partial z_{1}} e^{i k_{\mathbf{o n}} \cdot \mathrm{r}_{\mathbf{1}}} \phi_{0}\left(r_{2}\right)\right] \nabla_{1}^{2} e^{-i k_{\mathbf{0}} \cdot \mathbf{r}_{\mathbf{r}}} \phi_{0}^{*}\left(r_{1}\right)\right\}=0
\end{aligned}
$$

because $\phi_{0}\left(r_{1}\right)$ is exponentially decreasing as $r_{1} \rightarrow \infty$; similarly, pairs of terms involving ∇_{2}^{2} and $\phi_{0}\left(r_{2}\right)$ are seen to vanish after employing Green's theorem in r_{2} space.
In this fashion, Eq. (37) yields

$$
\begin{align*}
& \int d \mathbf{r}\left\{\Phi^{*} \nabla_{1}^{2} \frac{\partial}{\partial z_{1}} e^{i k_{0} \cdot r_{1}} \phi_{0}\left(r_{2}\right)-\left[\frac{\partial}{\partial z_{1}} e^{i k_{\mathrm{on}} \cdot \mathrm{r}_{\mathrm{r}}} \phi_{0}\left(r_{2}\right)\right] \nabla_{1}^{2} \Phi^{*}\right\} \\
& +\int d \mathbf{r}\left\{e^{-i k_{0} \mathrm{n} \cdot \mathrm{r}_{\mathbf{r}}} \phi_{0}^{*}\left(r_{2}\right) \nabla_{1}^{2} \frac{\partial \Phi}{\partial z_{1}}-\frac{\partial \Phi}{\partial z_{1}} \nabla_{1}^{2} e^{-i k_{0 \mathbf{n}} \cdot \mathrm{r}_{\mathbf{1}}} \phi_{0}^{*}\left(r_{2}\right)\right\} \\
& +\int d \mathbf{r}\left\{\Phi^{*} \nabla_{2}^{2} \frac{\partial}{\partial z_{1}} e^{i k_{0 \mathrm{n}} \cdot \mathrm{r}_{\mathrm{s}}} \phi_{0}\left(r_{1}\right)-\left[\frac{\partial}{\partial z_{1}} e^{i k_{0 \mathrm{n}} \cdot \mathrm{r}_{\mathrm{r}}} \phi_{0}\left(r_{1}\right)\right] \nabla_{2}^{2} \Phi^{*}\right\} \\
& +\int d \mathbf{r}\left\{e^{-i k_{0 \mathrm{n}} \cdot \mathrm{r} \mathbf{r}} \phi_{0}^{*}\left(r_{1}\right) \nabla_{2}^{2} \frac{\partial \Phi}{\partial z_{1}}-\frac{\partial \Phi}{\partial z_{1}} \nabla_{2}^{2} e^{-i k_{\mathrm{on}} \cdot \mathrm{r}_{\mathbf{r}}} \phi_{0}^{*}\left(r_{1}\right)\right\} \\
& +\int d \mathbf{r}\left\{\Phi^{*}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right) \frac{\partial \Phi}{\partial z_{1}}-\frac{\partial \Phi}{\partial z_{1}}\left(\nabla_{1}^{2}+\nabla_{2}^{2}\right) \Phi^{*}\right\}-\frac{2 m}{\hbar^{2}} \int d \mathbf{r} \Psi^{*} \frac{\partial V}{\partial z_{1}} \Psi=0 . \tag{39}
\end{align*}
$$

Reduction to Surface Integrals

Green's theorem in r_{1}-space can be employed in the first integral of Eq. (39). Thus, using (16), this first term reduces to

$$
\begin{align*}
& \int d \mathbf{r}_{2} \int d \mathbf{S}_{1} \cdot\left\{\Phi^{*} \nabla_{1} \frac{\partial}{\partial z_{1}} e^{i k_{0} \cdot r_{1}} \phi_{0}\left(r_{2}\right)-\left[\frac{\partial}{\partial z_{1}} e^{i k_{0} \cdot r_{1}} \phi_{0}\left(r_{2}\right)\right] \nabla_{1} \Phi^{*}\right\} \\
&=\int d \mathbf{S}_{1} \cdot\left\{A_{0}^{*}\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right) \frac{e^{-i k_{0} r_{1}}}{r_{1}} \nabla_{1} \frac{\partial}{\partial z_{1}} e^{i k_{0 \mathbf{n}} \cdot r_{1}}-\left[\frac{\partial}{\partial z_{1}} e^{i k_{0 \mathrm{n}} \cdot r_{1}}\right] \nabla_{1} A_{0}^{*}\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right) \frac{e^{-i k_{0} r_{1}}}{r_{1}}\right\}, \tag{40}
\end{align*}
$$

where $d \mathrm{~S}_{1}=r_{1}^{2} d \mathrm{n}^{\prime}$ is the surface element on the sphere at infinity in three-dimensional r_{1} space. Similarly, the second term in (39) reduces to

$$
\begin{align*}
\int d \mathbf{S}_{1} & \cdot\left\{e^{-i k_{0 \mathbf{0} \cdot} \cdot r_{1}} \nabla_{1} \frac{\partial}{\partial z_{1}} A_{0}\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right) \frac{e^{i k_{0} r_{1}}}{r_{1}}\right. \\
& \left.-\left[\frac{\partial}{\partial z_{1}} A_{0}\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right) \frac{e^{i k_{0} r_{1}}}{r_{1}}\right] \nabla_{1} e^{-i k_{\mathbf{o n}} \cdot r_{1}}\right\} . \tag{41}
\end{align*}
$$

Using Green's theorem in \mathbf{r}_{2} space, the third integral in (39) becomes

$$
\begin{align*}
& \int d \mathbf{r}_{1} \int d \mathbf{S}_{2} \cdot \sum_{i}\left\{\phi_{j}^{*}\left(\mathbf{r}_{1}\right) A_{j}^{*}\left(\mathbf{n}^{\prime}\right) \frac{e^{-i k_{i}, \mathbf{r}}}{r_{2}} \frac{\partial \phi_{0}\left(r_{1}\right)}{\partial z_{1}}\right. \\
& \left.\times \nabla_{2} e^{i k_{\mathrm{on}} \cdot \mathrm{r}_{\mathrm{r}}}-\frac{\partial \phi_{0}\left(r_{1}\right)}{\partial z_{1}} e^{i k_{\mathrm{on}} \cdot \mathrm{r}_{\mathrm{s}}} \phi_{j}^{*}\left(\mathrm{r}_{1}\right) \nabla_{2} A_{i}^{*}\left(\mathrm{n}^{\prime}\right) \frac{e^{-i k_{\mathrm{i}} r_{3}}}{r_{2}}\right\} \text {, } \tag{42}
\end{align*}
$$

where $d \mathbf{S}_{2}=r_{2}^{2} d \mathrm{n}^{\prime}$. The quantity $A_{i}\left(\mathrm{n}^{\prime}\right)$ in (42) is identical with $A_{i}\left(\mathrm{n} \rightarrow \mathrm{n}^{\prime}\right)$ defined in (16) because

$$
\begin{aligned}
& =\lim _{\substack{\mathbf{r}_{1} \rightarrow \boldsymbol{\sim}\| \|_{n} \\
r_{1} \rightarrow \boldsymbol{p}}} \int d \mathbf{r}_{2} \phi_{i}^{*}\left(\mathbf{r}_{2}\right) \Phi\left(\mathbf{r}_{2}, \mathbf{r}_{1}\right)
\end{aligned}
$$

$$
\begin{equation*}
=\lim _{\substack{\mathbf{r}_{1} \rightarrow \| \mathbf{n}_{\mathbf{n}} \\ r_{1}=\rho}} \int d \mathbf{r}_{2} \phi_{i}^{*}\left(\mathbf{r}_{2}\right) \Phi\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right)=A_{i}\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right) e^{i k_{i} \rho} / \rho . \tag{43}
\end{equation*}
$$

The first equality in (43) simply interchanges the labeling on $\mathbf{r}_{1}, \mathbf{r}_{2}$; the second equality makes use of (15). I now observe that when $k_{i} \neq k_{0}$ the integral in (42) oscillates infinitely rapidly at infinite r_{2} and gives no net contribution when averaged over any small range of incident energies. Hence, the terms $k_{i} \neq k_{0}$ are inconsequential, and can be dropped ${ }^{4}$ from (42). But the remaining term $k_{i}=k_{0}$ vanishes after integration over r_{1} because $\partial / \partial z_{1}$ has odd parity. Thus the expression (42), which equals the third integral in (39), vanishes. Similarly, the fourth integral in (39) vanishes.

The fifth integral in (39) is evaluated using Green's theorem in $\mathbf{r}_{1}, \mathbf{r}_{2}$ space. As explained in connection with Eq. (23), the surface elements at infinity in r_{1}, r_{2} space are of the following different types: (a) $r_{1} \rightarrow \infty, r_{2}$ remains finite; (b) $r_{2} \rightarrow \infty, r_{1}$ remains finite; (c) both $r_{1}, r_{2} \rightarrow \infty$. Then, as in Eqs. (26)(29), the contribution from surface elements of type (a) to the fifth integral in (39) is

[^42]\[

$$
\begin{align*}
& \int d \mathbf{r}_{2} \int d \mathbf{S}_{1} \cdot \sum_{i, i}\left\{\phi_{i}^{*}\left(\mathbf{r}_{2}\right) A_{i}^{*}\left(\mathbf{n}^{\prime}\right) \frac{e^{-i k_{i} r_{1}}}{r_{1}} \nabla_{1} \phi_{i}\left(\mathbf{r}_{2}\right) \frac{\partial}{\partial z_{1}} A_{l}\left(\mathbf{n}^{\prime}\right) \frac{e^{i k_{i} r_{1}}}{r_{1}}\right. \\
&\left.-\left[\phi_{l}\left(\mathbf{r}_{2}\right) \frac{\partial}{\partial z_{1}} A_{i}\left(\mathbf{n}^{\prime}\right) \frac{e^{i k_{l} r_{1}}}{r_{1}}\right] \nabla_{1} \phi_{j}^{*}\left(\mathbf{r}_{2}\right) A_{j}^{*}\left(\mathbf{n}^{\prime}\right) \frac{e^{-i k_{i} r_{1}}}{r_{1}}\right\} \tag{44a}\\
&=\int d \mathbf{S}_{1} \cdot \sum_{i}\left\{A_{i}^{*}\left(\mathbf{n}^{\prime}\right) \frac{e^{-i k_{i} r_{1}}}{r_{1}} \nabla_{1} \frac{\partial}{\partial z_{1}} A_{i}\left(\mathbf{n}^{\prime}\right) \frac{e^{i k_{i} r_{1}}}{r_{1}}-\left[\frac{\partial}{\partial z_{1}} A_{i}\left(\mathbf{n}^{\prime}\right) \frac{e^{i k_{i} r_{2}}}{r_{1}}\right] \nabla_{1} A_{i}^{*}\left(\mathbf{n}^{\prime}\right) \frac{e^{-i k_{i} r_{1}}}{r_{1}}\right\} . \tag{44b}
\end{align*}
$$
\]

The expression (44a) is simply the contribution to the fifth integral of (39) made by the terms involving ∇_{1}^{2}. The expression (44b) equals (44a) by virtue of the orthonormality of the $\phi_{j}\left(\mathrm{r}_{2}\right)$. Even if $\phi_{j}\left(\mathrm{r}_{2}\right)$ were not an orthogonal set, however, the terms $k_{i} \neq k_{l}$ in (44) would be inconsequential, just as in Eq. (42).

The contribution to the fifth integral of (39) from surface elements of type (b) (described in the preceding paragraph) is simply the contribution to that integral made by the terms involving ∇_{2}^{2}. This contribution, which also involves a double sum over j, l as in (44a) vanishes because: (i) terms $k_{i} \neq k_{i}$ are inconsequential; (ii) the fact that $\partial / \partial z_{1}$ has odd parity eliminates terms $k_{j}=k_{i}$. There remains the contribution to the fifth integral of (39) from surface elements of type (c). As in Eq. (23), this contribution is

$$
\begin{align*}
\int d S\left\{A^{*} \frac{e^{-i K r}}{r^{6 / 2}}\right. & \frac{\partial}{\partial r} \\
& \frac{\partial}{\partial z_{1}} A \frac{e^{i K r}}{r^{5 / 2}} \tag{45}\\
& \left.-\left[\frac{\partial}{\partial z_{1}} A \frac{e^{i K r}}{r^{5 / 2}}\right] \frac{\partial}{\partial r} A^{*} \frac{e^{-i K r}}{r^{5 / 2}}\right\},
\end{align*}
$$

where r is defined by Eq. (21); $A \equiv A\left(\mathbf{n} \rightarrow \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}\right)$ defined by Eqs. (19)-(22); $d S$ is given by Eq. (31); and I have recognized that $v \cdot \nabla=v_{1} \cdot \nabla_{1}+v_{2} \cdot \nabla_{2}=$ $\partial / \partial r$ [v as in Eqs. (23) and (25), ∇ the six-dimensional gradient operator in $\mathbf{r}_{1}, \mathbf{r}_{2}$ space].

Surface Integrals Evaluated

The first five integrals in (39) have been reduced to (40), (41), (44b), and (45). I now shall evaluate these surface integrals. Using Eq. (12) of Ref. 1, one sees (just as in the case of potential scattering) that (40) and (41) together yield

$$
\begin{align*}
& \int d \mathbf{n}^{\prime} 4 \pi i k_{0}\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right) \delta\left(\mathbf{n}-\mathbf{n}^{\prime}\right)\left[A_{0}^{*}\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right)\right. \\
& \left.\quad-A_{0}\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right)\right]=8 \pi k_{0} \operatorname{Im} A_{0}(\mathbf{n} \rightarrow \mathbf{n}) \tag{46}
\end{align*}
$$

The expression (44b) obviously reduces to

$$
\begin{equation*}
-\sum_{i} 2 k_{i}^{2} \int d \mathbf{n}^{\prime}\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)\left|A_{i}\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right)\right|^{2} . \tag{47}
\end{equation*}
$$

Using (21), (22), and (31), the expression (45) is seen to equal

$$
\begin{align*}
-2 \int \frac{d S}{r^{5}}|A|^{2} K^{2} \frac{z_{1}}{r} & =-2 \int \frac{d S}{r^{5}}|A|^{2} K^{2}\left(\mathbf{n} \cdot \mathbf{n}_{1}^{\prime}\right) \frac{r_{1}}{r} \\
& =-2 \int \frac{d S}{r^{5}}|A|^{2} K\left(\mathbf{n} \cdot \mathbf{k}_{1}^{\prime}\right) . \tag{48}
\end{align*}
$$

Thus, since (30a) can be put in the form (32), the right side of (48)-which equals (45)-can be expressed as
$\frac{-2 \hbar^{2}}{m K^{3}} \int d \mathbf{k}_{1}^{\prime} d \mathbf{k}_{2}^{\prime} \delta\left(E^{\prime}-E\right)\left(\mathbf{n} \cdot \mathbf{k}_{1}^{\prime}\right)\left|A\left(\mathbf{n} \rightarrow \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}\right)\right|^{2}$.

I next note that the definitions (22) imply the magnitudes $k_{1}^{\prime}, k_{2}^{\prime}$ of $\mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}$ obey the relations

$$
\begin{align*}
& k_{1}^{\prime}\left(q^{-1}\right)=k_{2}^{\prime}(q) \tag{50}\\
& k_{2}^{\prime}\left(q^{-1}\right)=k_{1}^{\prime}(q)
\end{align*}
$$

Consequently, directly from the definition (19)
where $k_{1}^{\prime}, k_{2}^{\prime}$ are $k_{1}^{\prime}(q), k_{2}^{\prime}(q)$ of Eq. (22). Using (15), Eq. (51) can be rewritten as

Hence, because $\mathbf{r}_{1}, \mathbf{r}_{2}$ are just dummy variables in Eqs. (19) and (52), those equations imply

$$
\begin{equation*}
A\left(\mathbf{n} \rightarrow \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}\right)=A\left(\mathbf{n} \rightarrow \mathbf{k}_{2}^{\prime}, \mathbf{k}_{1}^{\prime}\right) \tag{53}
\end{equation*}
$$

Obviously, with indistinguishable electrons, the actual amplitude for ionization must obey a relation like (53). It seemed desirable to show that (53) indeed does follow from the definition of A, however; moreover, the fact that (53) can be proved supports the interpretation of the many-particle current operator (discussed in Sec. II), which interpretation led to the relations (30)-(32) between
$\sigma_{\text {ion }}$ and A. Relabeling the dummy variables \mathbf{k}_{1}^{\prime} and \mathbf{k}_{2}^{\prime} in (49), and using (53), one sees that (45) equals

$$
\begin{gather*}
\frac{-2 \hbar^{2}}{m K^{3}} \int d \mathbf{k}_{2}^{\prime} d \mathbf{k}_{1}^{\prime} \delta\left(E^{\prime}-E\right)\left(\mathbf{n} \cdot \mathbf{k}_{2}^{\prime}\right)\left|A\left(\mathbf{n} \rightarrow \mathbf{k}_{2}^{\prime}, \mathbf{k}_{1}^{\prime}\right)\right|^{2} \\
=\frac{-\hbar^{2}}{m K^{3}} \int d \mathbf{k}_{1}^{\prime} d \mathbf{k}_{2}^{\prime} \delta\left(E^{\prime}-E\right)\left(\mathbf{n} \cdot \mathbf{k}_{1}^{\prime}\right. \\
\left.\quad+\mathbf{n} \cdot \mathbf{k}_{2}^{\prime}\right)\left|A\left(\mathbf{n} \rightarrow \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}\right)\right|^{2} \tag{54}
\end{gather*}
$$

Expressions for d_{d} and

In the present $e-\mathrm{H}$ scattering problem, using (29) and (32), the total cross section is

$$
\begin{align*}
\sigma= & \sum_{i} \frac{k_{i}}{k_{0}} \int d \mathbf{n}^{\prime}\left|A_{i}\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right)\right|^{2}+\frac{1}{2 k_{0}} \frac{\hbar^{2}}{m K^{3}} \\
& \times \int d \mathbf{k}_{1}^{\prime} d \mathbf{k}_{2}^{\prime} \delta\left(E^{\prime}-E^{\prime}\right)\left|A\left(\mathbf{n} \rightarrow \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}\right)\right|^{2} \tag{55}
\end{align*}
$$

Correspondingly, the definition (1) of the momen-tum-transfer cross section generalizes to
$\sigma_{d}=\frac{1}{k_{0}} \sum_{i} \frac{k_{i}}{k_{0}} \int d \mathbf{n}^{\prime}\left[k_{0}-k_{i}\left(\mathbf{n}^{\prime} \cdot \mathbf{n}\right)\right]\left|A_{i}\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right)\right|^{2}$ $+\frac{1}{k_{0}} \frac{1}{2 k_{0}} \frac{\hbar^{2}}{m K^{3}} \int d \mathbf{k}_{1}^{\prime} d \mathbf{k}_{2}^{\prime} \delta\left(E^{\prime}-E\right)\left[k_{0}-\mathbf{k}_{1}^{\prime} \cdot \mathbf{n}\right.$
$\left.-\mathbf{k}_{2}^{\prime} \cdot \mathbf{n}\right]\left|A\left(\mathbf{n} \rightarrow \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}\right)\right|^{2}$.
When multiplied by the incident velocity $\hbar k_{0} / m$, the first term on the right side of (56) obviously represents the rate (in units of the initial momentum $\hbar k_{0}$, to keep the dimensions of σ_{d} equal to length squared) with which momentum along the incident direction n is being transferred in excitation processes, including elastic scattering. Similarly, the last term in (56) obviously represents the momentum transfer by ionization, recognizing that when ionization occurs both electrons simultaneously carry away momentum.

The generalization of (7) to the present problem is

$$
\begin{equation*}
\sigma=\left(4 \pi / k_{0}\right) \operatorname{Im} A_{0}(\mathbf{n} \rightarrow \mathbf{n}), \tag{57}
\end{equation*}
$$

where σ is given by (55), and A_{0} as always is the elastic forward scattering amplitude. In other words, although the particles are indistinguishable and A involves both ordinary and exchange amplitudes via (18), the optical theorem has exactly the same form as if the particles were distinguishable. If a proof of (57) is desired, it can be obtained by starting from

$$
\begin{equation*}
-\int d \mathbf{r}(H \Psi)^{*} \Psi+\int d \mathbf{r} \Psi^{*} H \Psi=0 \tag{58}
\end{equation*}
$$

instead of (36), and then reducing (58) to surface integrals along the lines employed earlier in this section.

Returning now to Eq. (39), the first five integrals in (39) have been reduced to the sum of (46), (47), and (54). Therefore, using (57), Eq. (39) yields

$$
\begin{align*}
& 2 k_{0}^{2} \sigma-\sum_{i} 2 k_{i}^{2} \int d \mathbf{n}^{\prime}\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right)\left|A_{i}\left(\mathbf{n} \rightarrow \mathbf{n}^{\prime}\right)\right|^{2} \\
& \quad \times \frac{-\hbar^{2}}{m K^{3}} \int d \mathbf{k}_{1}^{\prime} d \mathbf{k}_{2}^{\prime} \delta\left(E^{\prime}-E\right)\left(\mathbf{k}_{1}^{\prime} \cdot \mathbf{n}+\mathbf{k}_{2}^{\prime} \cdot \mathbf{n}\right) \\
& \quad \times\left|A\left(\mathbf{n} \rightarrow \mathbf{k}_{1}^{\prime}, \mathbf{k}_{2}^{\prime}\right)\right|^{2}=\frac{2 m}{\hbar^{2}} \int d \mathbf{r} \Psi^{*} \frac{\partial V}{\partial z_{1}} \Psi . \tag{59}
\end{align*}
$$

Using (55) to eliminate σ and dividing by $2 k_{0}^{2}$, one sees that Eq. (59) implies Eq. (8).

There remains one point to be discussed before concluding this paper, namely, the effect of including Coulomb functions rather than plane waves in (14). Using Coulomb functions in (14) means the asymptotic form of (16) must be modified by inclusion of an extra factor, ${ }^{5}$ proportional to $\exp \left(-i \eta_{i} \ln k_{i} r_{1}\right)$, where η_{i} is proportional to k_{i}^{-1}. Once this factor is included, the proof which has been given goes through essentially as in the plane-wave case, except that one must include derivatives of $\exp \left(-i \eta_{j} \ln k_{i} r_{1}\right)$ at infinity. But these derivatives, like the derivatives of r_{1}^{-1} itself, are of higher order in r_{1}^{-1} and so can be neglected at infinite r_{1}. This justifies the assertion, in Sec. I, that the momentum-transfer theorem should apply, e.g., to excitation of H^{-}by electrons. The argument in this paragraph also suggests the momentum-transfer theorem will remain valid in, e.g., ionization of H^{-}by electrons; for a more definitive statement, however, it is necessary to know how Eq. (19) must be modified when two electrons go out to infinity in the field of the proton ${ }^{6}$ (fixed at the origin). The reader is reminded, moreover, of the remark in Sec. I that the right side of (8) apparently diverges for $e-\mathrm{H}^{-}$collisions. In elec-tron-ion collisions, therefore, Eq. (8) (whether or not it is essentially valid) is not likely to be very useful without imposition of suitable cutoffs.

[^43]
On the Proof and Uniqueness of Wulff's Construction of the Shape of Minimum Surface Free Energy

Charles A. Johnson and G. D. Chakerlan*
Edgar C. Bain Laboratory, For Fundamental Research
United States Steel Corporation Research Center, Monroeville, Pennsylvania

(Received 15 February 1965)

Abstract

The existing proof of Wulf's theorem shows that, among all convex bodies of fixed volume, the shape given by Wulf's construction has the least surface free energy. Here it is pointed out that the restriction to convexity is unnecessary: among all bodies of fixed volume, the shape given by Wulf's construction has (uniquely) the least surface free energy. Obvious generalizations are noted.

THE question of determining the equilibrium shape of a crystal whose specific surface free energy $\gamma(\hat{n})$ is a given function of unit surface normal, \hat{n}, was first posed by Gibbs. ${ }^{1}$ The solution, in the form of a construction, was given by Wulf. ${ }^{2}$

Wulff's construction is as follows. From a fixed origin, erect vectors in the direction \hat{n}, of length proportional to $\gamma(\hat{n})$. For each such vector erect the plane normal to the vector which contains the end point of the vector. The largest closed body contained within all the members of this set of planes is then, according to Wulf, the equilibrium shape. That this shape must always be convex [for $\gamma(\hat{n}) \geq 0$] is clear; Wulff assumed in addition that the construction would always yield a convex polyhedron.

Wulff showed that the shape given by his construction provides a relative minimum in total surface free energy. Whether or not Wulf's construction actually gives an absolute minimum remained an open question until 1944, when Dinghas ${ }^{3}$ showed that, among all convex polyhedra of fixed volume, the shape given by Wulff's construction (supposing that Wulff's construction does yield a polyhedron) has an absolute minimum in surface free energy. Dinghas' proof depends essentially upon the BrunnMinkowski inequality, which, in the form quoted by him, states that for any two convex polyhedra A, B, having volumes $V(A)$ and $V(B)$, the volume of the Minkowski sum, ${ }^{4} A \times B$, of A and B satisfies

$$
V(A \times B)^{\frac{1}{2}} \geq V(A)^{\frac{1}{t}}+V(B)^{\frac{1}{2}}
$$

[^44]with equality holding only when A and B are geometrically similar and similarly oriented.

More recently, Herring ${ }^{5}$ has pointed out that Wulf's construction need not necessarily lead to polyhedra, but can give smoothly curved equilibrium shapes as well. The generalization of Dinghas' result for convex polyhedra to arbitrary convex bodies is immediate ${ }^{5}$; further, Herring conjectured that the restriction to convex bodies was not necessary, but offered no proof.

Mullins ${ }^{6}$ has shown that, for the equivalent twodimensional problem (the shape having least line free energy for fixed area), the equilibrium shape must be convex, but was not able to generalize the argument to three dimensions.

We wish to point out that the Brunn-Minkowski inequality is valid for nonconvex bodies as well ${ }^{7,8}$; the theorem has been proved in the following form:
For any two nonempty, closed, bounded sets of points A and B in Euclidean space of m dimensions the inequality

$$
V(A \times B)^{1 / m} \geq V(A)^{1 / m}+V(B)^{1 / m}
$$

is valid; where, for sets of positive measure [i.e., $V(A), V(B)>0]$, equality occurs when, and only when, A and B are geometrically similar and similarly oriented convex bodies.

Thus, citation of this stronger theorem in the Dinghas-Herring ${ }^{3,5}$ proof is sufficient to prove that, among all bodies of fixed (finite) volume, the shape given by Wulff's construction has (uniquely) the least surface free energy.

[^45]It is of interest to point out that Wulff's solution is limited neither to the problem of minimizing surface free energy nor to three-dimensional Euclidean space. The general Brunn-Minkowski inequality ${ }^{7,8}$ can be used to prove the following theorem for Euclidean space of m dimensions (E^{m}).

Given a positive function of direction in $E^{m}, f(\hat{n})$. Then, among all closed bodies of fixed m-dimensional volume, V_{m}, the $[(m-1)$-dimensional] surface integral of $f(\hat{n})$ is least when, and only when, the body is
that given by Wulf's construction, using ($m-1$) dimensional hyperplanes. Further, it can readily be shown that this minimum value is given by

$$
m([f(\hat{n})+f(-\hat{n})] / w(\hat{n})) V_{m},
$$

where $f(\pm \hat{n})$ are the values of the function for opposed surface orientations and $w(n)$ is the width of the Wulff body of volume V_{m} in the direction $\hat{n} .^{9}$

[^46]
Theorem on Nonradiative Electromagnetic and Gravitational Fields

A. Papapetrou*
Palmer Physical Laboratory, Princeton University, Princeton, New Jersey

(Received 3 February 1965)

Abstract

A vacuum electromagnetic feld is considered which is (a) stationary below a hypersurface Σ intersecting all parametric lines of the time coordinate t and (b) nonradiative above $\boldsymbol{\Sigma}$. It is proved that such a field is stationary also above Σ. The same theorem is proved to be valid for the pure gravitational field in general relativity and for the combined gravitational and electromagnetic field in the Einstein-Maxwell theory.

INTRODUCTION

IT seems at present inevitable that approximation methods should be used to study gravitational radiation. One of the questions of primary interest is the discussion of the emission of gravitational radiation by a given nonstationary material system. To achieve this it is indispensable to formulate and use conditions which shall exclude incoming radiation. We shall not enter here in the rather delicate question of the possibility to find purely local forms of such a condition. Instead we shall consider only fields which have the following property: The field is stationary below a characteristic hypersurface Σ which will be supposed to coincide asymptotically with an elementary cone, open into the future, of the limiting Minkowski metric. Evidently there cannot be any incoming radiation in such a case. It might be useful to recall that this assumption has been used directly or indirectly in all recent work on gravitational radiation. ${ }^{1-9}$

For a clear formulation of the aim of this paper the following second remark will be needed. The gravitational field quantities which describe radiation at large distances from the sources are the terms of the curvature tensor which tend to zero as $1 / r$ for $r \rightarrow \infty$. This result is contained implicitly already in the first discussion of gravitational radiation by Einstein ${ }^{10}$ and has been confirmed directly by the recent work on the subject. A similar result holds, of course, also in the Maxwell theory (in special relativity):

[^47]Electromagnetic radiation is described, at large distances from the sources, by the terms of the field tensor $F_{\mu \nu}$ which are proportional to $1 / r$. We shall call these terms, for brevity, the radiative terms of the gravitational or the electromagnetic field.

The following theorem will now be proved. A field which is stationary below a characteristic hypersurface Σ and has no radiative terms above Σ will be stationary also above Σ. The proof will be complete for the Maxwell field in special relativity. But there will remain a certain lack of completeness in the case of the gravitational as well as of the combined gravitational-electromagnetic field. The exact nature of the mathematical difficulty which is still present will be clear later.

II. THE ELECTROMAGNETIC FIELD IN SPECIAL RELATIVITY

A. Proof Based on the Field Equations

Throughout this paper we shall assume that the material system which constitutes the sources of the field we are considering is contained, for all values of the time t, inside a cylinderlike tube around the t axis whose three-dimensional section is a sphere of radius a :

$$
\begin{equation*}
\left.j^{\mu}=0, \quad \text { for } \quad r>a \quad \text { (and every } t\right) . \tag{1}
\end{equation*}
$$

We shall not be interested in the field inside the region $r \leq a$.

We shall use Lorentz gauge,

$$
\begin{equation*}
\eta^{\mu \nu} A_{\mu, p}=0, \tag{2a}
\end{equation*}
$$

in which case the Maxwell equations are

$$
\begin{equation*}
\square A_{\mu}=0 . \tag{2}
\end{equation*}
$$

The retarded solution of this equation is given by the formula

$$
\left.\begin{array}{r}
A_{\mu}\left(x^{i}, t\right)=\int \frac{1}{R} j_{\mu}\left(X^{i}, T\right) d^{3} X ; \tag{3}\\
T=t-R, \quad R^{2}=\left(X^{i}-x^{i}\right)^{2} .
\end{array}\right\}
$$

In the case of sources j_{μ} satisfying (1) it follows from (3) that the potential A_{μ} will be, in the region $r>a$, of the form

$$
\begin{align*}
& A_{\mu}=\sum_{n=1}^{\infty} \frac{1}{r^{n}} \cdot f_{\mu}\left(t-r, \xi^{i}\right) \tag{4}\\
& r^{2}=\left(x^{i}\right)^{2}, \quad \xi^{i}=x^{i} / r \tag{4a}
\end{align*}
$$

The expression (4) must of course satisfy Eqs. (2a) and (2).

It will be preferable to work with the electromagnetic field $F_{\mu \nu}=A_{\nu, \mu}-A_{\mu, \nu}$: We shall in this way avoid any trivial "radiative" terms which might occur in A_{μ}. It is seen at once that $F_{\mu \nu}$ will be again of the form (4):

$$
\begin{equation*}
F_{\mu \nu}=\sum_{n=1}^{\infty} \frac{1}{r^{n}}{ }_{n} F_{\mu \nu}\left(t-r, \xi^{i}\right) \tag{5}
\end{equation*}
$$

Maxwell's first set of field equations now reads

$$
\begin{equation*}
\square F_{\mu \nu}=0 \tag{6}
\end{equation*}
$$

There is also the second set of equations,

$$
\begin{equation*}
F_{[\mu \nu, \lambda]}=0 \tag{7}
\end{equation*}
$$

For the proof of our theorem it will be sufficient to use (5) and (6).

We shall now state exactly the assumptions on which the proof of our theorem will be based.
(a) The field is stationary below Σ :

$$
\begin{align*}
F_{\mu \nu, 4}=0 \text { or equivalently } & { }_{n} F_{\mu v, 4}=0 \\
& \text { for all } n . \tag{8}
\end{align*}
$$

It is known from elementary considerations that a stationary electromagnetic field cannot have a term proportional to $1 / r$. Hence we shall have, besides (8),

$$
\begin{equation*}
{ }_{1} F_{\mu \nu}=0 . \tag{8a}
\end{equation*}
$$

(b) The field has no radiative term above Σ; i.e., we shall have the condition (8 a) in the whole of space-time.
(c) The demand that Σ coincides asymptotically with an elementary cone opening into the future has the consequence that the equation of Σ will be of the asymptotic form

$$
\begin{equation*}
t-r+\cdots=\text { const } \tag{9}
\end{equation*}
$$

the omitted terms being independent of t and of order r^{λ} with $\lambda \leq 0$.

For the proof of our theorem we shall need the following relation, derived by a straightforward computation:

$$
\begin{align*}
& \square \frac{f\left(t-r, \xi^{i}\right)}{r^{n}}=-\frac{2(n-1)}{r^{n+1}} \frac{\partial f}{\partial t}+\frac{1}{r^{n+2}} \\
& \times\left\{\left(\xi^{k} \xi^{k}-\delta^{k l}\right) \frac{\partial^{2} f}{\partial \xi^{k} \partial \xi^{k}}+2 \xi^{k} \frac{\partial f}{\partial \xi^{k}}-n(n-1) f\right\} . \tag{10}
\end{align*}
$$

According to assumptions (a) and (b) the expression (5) for $F_{\mu \nu}$ will now start with the term $n=2$. It follows then from (10) that the leading term of the left-hand side of Eq. (6) will be $-\left(2 / r^{3}\right)_{2} F_{\mu \nu, 4}$.
[When we consider a field with a radiative term, ${ }_{1} F_{\mu \nu} \neq 0$, the left-hand side of the field equation (6) starts again with a term proportional to $1 / r^{3}$, the term proportional to $1 / r^{2}$ dropping out because of the factor $n-1$. The physical meaning of this feature is that the field equations do not determine ${ }_{1} F_{\mu \nu, 4}$, the time dependence of the radiative part of the field being arbitrary. The second set of Maxwell's equations (7) imposes certain restrictions on the six quantities ${ }_{1} F_{\mu r}$ with the well-known result: The leading parts of the electric as well as of the magnetic field are orthogonal to the radial direction as well as to each other and of equal strength; the necessary and sufficient condition for the nonexistence of electromagnetic radiation is thus found again to be ${ }_{1} F_{\mu \nu}=0$.]

Consequently, it follows from the field equation (6) that we shall have ${ }_{2} F_{\mu \gamma, 4}=0$ in the whole of space-time and not only below Σ as we assumed in (8).

Again by using (10) we find that the next term of the left-hand side of (6) is

$$
\begin{aligned}
\frac{1}{r^{4}}\left\{-4{ }_{3} F_{\mu \nu, 4}+\left(\xi^{k} \xi^{l}-\delta^{k l}\right)\right. & \frac{\partial^{2}}{\partial \xi^{k} \partial \xi^{l}}{ }_{2} F_{\mu \nu} \\
& +2 \xi^{k} \frac{\partial}{\left.\partial \xi^{k}{ }_{2} F_{\mu \nu}-2{ }_{2} F_{\mu \nu}\right\}}
\end{aligned}
$$

The coefficient of $1 / r^{4}$ must vanish because of (6): ${ }_{3} F_{\mu \nu, 4}=\frac{1}{4}\left\{\left(\xi^{k} \xi^{l}-\delta^{k l}\right) \frac{\partial^{2}}{\partial \xi^{k} \partial \xi^{i}}+2 \xi^{k} \frac{\partial}{\partial \xi^{k}}-2\right\}{ }_{2} F_{\mu \nu}$.
Since ${ }_{2} F_{\mu \nu}$ has been already found to be time independent, it follows from this last relation that ${ }_{s} F_{\mu r, 4}$ will be also time independent. But according to assumption (8) ${ }_{3} F_{\mu \nu, 4}$ vanishes below Σ. Hence, it will vanish in the whole space-time. By the same reasoning we find from the subsequent terms of equation (6) that ${ }_{4} F_{\mu \nu, 4,}{ }_{5} F_{\mu \nu, 4}$ and so on will vanish in the whole space-time. But this is then the theorem we wanted to prove.

It might be useful to remark that for this proof it is not necessary to use a characteristic hypersurface Σ. Exactly the same reasoning can be repeated with any hypersurface Σ^{\prime}, subject only to the condition
that it intersects all the parametric lines of the coordinate t at points with values $t>-\infty$.

The general form of a nonradiative electromagnetic field, which is not supposed to satisfy the condition (8), can be easily determined by a similar reasoning. We firstly derive from the vanishing of the coefficient of $1 / r^{3}$ in (6), as before, ${ }_{2} F_{\mu r, 4}=0$. But now from the vanishing of the coefficient of $1 / r^{4}$ in (6) we conclude only that ${ }_{3} F_{p r, 4}$ is time-independent, or equivalently ${ }_{3} F_{4 v, 44}=0$. Similarly, the coefficient of $1 / r^{8}$ gives ${ }_{4} F_{\mu p, 44}=0$; the general result is given by the condition

$$
\begin{equation*}
\partial^{n-1}\left({ }_{n} F_{\mu \nu}\right) / \partial l^{n-1}=0 . \tag{11}
\end{equation*}
$$

B. Proof Based on the Properties of Shock Waves

It has not been possible to prove this theorem by a similar method for the gravitational field, when the exact field equations of general relativity are used. For this reason we shall now give a second proof of the theorem for the electromagnetic field. We shall then see later that it will be possible to apply this new method to the gravitational case too.

This proof will be based on the properties of shock waves. We therefore must start by enumerating the essential properties of electromagnetic shock waves. [See e.g. Ref. 11, where these properties are given in the form which will be useful to us here. Actually Stellmacher discusses the combined Einstein-Maxwell theory. To arrive at the formulae which are valid in the simple Maxwell theory (in special relativity) one has to put $g_{\mu \nu}=\eta_{\mu \nu}$, in the whole spacetime.] For a more concrete reasoning we shall consider a shock wave of order 2 ; it will be seen later that the results at which we shall arrive are valid for shock waves of any order. Thus we shall now assume that on the hypersurface Σ there are discontinuities of the second derivatives of the electromagnetic potential A_{μ}. These discontinuities, normally denoted by [$A_{\mu, \rho \sigma}$], are of the form

$$
\begin{equation*}
\left[A_{\mu, \rho \sigma}\right]=\varphi_{\mu} p_{\rho} p_{\sigma}, \tag{12}
\end{equation*}
$$

p_{β} being the normal to the hypersurface Σ.
Further we shall assume that the shock wave is a genuine, physically meaningful one; i.e., we exclude trivial shock waves, the discontinuities of which can be eliminated by a gauge transformation. Σ must then be a characteristic hypersurface and p_{ρ} is a null vector at every point of $\Sigma, p^{\rho} p_{\rho}=0$. The discussion will be simplified if we assume that any trivial discontinuities, which might be initially present, have been eliminated by an appropriate gauge transformation, so that only the genuine discontinuities
remain. The quantity φ_{μ} entering in (12) will then behave like a vector. From the Maxwell equations we find for φ_{μ} firstly the local condition

$$
\begin{equation*}
\varphi_{\mu} p^{\mu}=0 \tag{13}
\end{equation*}
$$

In the case of a genuine shock wave φ_{μ} cannot be parallel to p_{μ} and therefore it will necessarily be a spacelike vector. Thus the necessary and sufficient condition for the existence of a genuine shock wave is

$$
\begin{equation*}
-\varphi_{\mu} \varphi^{\mu} \equiv J>0 \tag{14}
\end{equation*}
$$

The scalar J may be called the amplitude of the shock wave.

Besides the algebraic local condition (13) there are two differential or propagation conditions on φ_{μ} which also follow from the Maxwell equations. The first one contains the amplitude J and has the form of the continuity equation

$$
\begin{equation*}
\left(J p^{\mu}\right)_{; \mu}=0 \tag{15}
\end{equation*}
$$

It is this equation which will allow us to arrive at a proof of the theorem. Since $J \neq 0$, we can write (15) in the form

$$
\begin{equation*}
(\ln J)_{, \mu} p^{\mu}+p_{; \mu}^{\mu}=0 \tag{15a}
\end{equation*}
$$

It will be convenient to use cartesian coordinates, in which case the covariant derivatives reduce to ordinary ones.
The equation of the hypersurface Σ being given by (9), we find for its normal vector p_{μ} or p^{μ} the asymptotic form
$p_{\mu}=\left(-\xi^{i}+\cdots, 1\right), \quad p^{\mu}=\left(\xi^{i}+\cdots, 1\right)$,
the omitted terms being at least of order $1 / r$. From the second of these equations we derive by an immediate computation

$$
p^{\mu}{ }_{, \mu}=2 / r+\cdots,
$$

the omitted terms being at least of order $1 / r^{2}$. To calculate the first term of Eq. (15a) we must remember that J is a function defined only on Σ. It will therefore be convenient to consider it as a function of x^{i} only, t being on Σ a function of x^{i} according to (9). It then follows that the leading part of the first term of Eq. (15a) is

$$
(\ln J)_{i} \xi^{i}=\partial(\ln J) / \partial r
$$

Thus Eq. (15a) reduces to

$$
\begin{equation*}
\partial(\ln J) / \partial r+2 / r+\cdots=0 \tag{17a}
\end{equation*}
$$

The integration of this equation gives

$$
\begin{equation*}
J=r^{-2} f(\theta, \varphi)+\cdots \tag{17}
\end{equation*}
$$

with $f \neq 0$. From (17) and (14) we conclude that the discontinuity vector φ_{μ} of a genuine shock wave will necessarily have a nonvanishing part proportional to $1 / r$.

From (12) and the definition of $F_{\mu \nu}, F_{\mu \nu}=A_{\nu, \mu}-$ $A_{\mu, \nu}$, we derive the relation

$$
\begin{equation*}
\left[F_{\mu \nu, \alpha}\right]=\left(\varphi_{\nu} p_{\mu}-\varphi_{\mu} p_{v}\right) p_{\alpha} \tag{18}
\end{equation*}
$$

This equation can be solved for φ_{μ}, if we introduce a vector n^{μ} satisfying the two conditions

$$
\varphi_{\mu} n^{\mu}=0, \quad p_{\mu} n^{\mu}=1
$$

Multiplication of (18) by $n^{\mu} n^{\alpha}$ gives

$$
\begin{equation*}
\left[F_{\mu \nu, \alpha}\right] n^{\mu} n^{\alpha}=\varphi_{\nu} \tag{18a}
\end{equation*}
$$

The meaning of this relation is evidently that, when a genuine shock wave of order 2 is propagated on Σ, the discontinuity of the first derivative of $F_{\mu \nu}$ will necessarily have a (nonvanishing) part proportional to $1 / r$.

We shall only mention that in the case of a shock wave of order $n \neq 2$ we have again equations identical to (13), (14), and (15). The only difference is that φ_{μ} is now defined by the relation

$$
\left[A_{\mu, \alpha_{2} \alpha_{2}} \cdots \alpha_{n}\right]=\varphi_{\mu} p_{\alpha_{1}} p_{\alpha_{3}} \cdots p_{\alpha_{n}}
$$

We find then, by repetition of the previous argument, that the derivatives of order $n-1$ of $F_{\mu \nu}$ will have discontinuities which contain a (nonvanishing) part proportional to $1 / r$.

Now according to our assumptions the relation (8a) is valid below as well as above Σ, the field starting in the whole region $r>a$ with a term proportional to $1 / r^{2}$. The derivatives of $F_{\mu \nu}$ will then also start with terms proportional to $1 / r^{2}$ and consequently there cannot be any part proportional to $1 / r$ in the discontinuities of $F_{\mu \nu}$ or of its derivatives. But then it follows from (18a) that there cannot be any (genuine) shock wave on Σ; the same result will evidently be true for any other characteristic hypersurface of the same type situated above Σ.

A physicist might be willing to accept that the nonexistence of any shock wave on a characteristic hypersurface Σ, below which the field is stationary, means that the field will be stationary also above Σ. But such a conclusion is not justified mathematically: There are functions $f(t)$ which are constant in the region $t \leq t_{0}$ and nonconstant in $t>t_{0}$ and still have all derivatives $\partial^{n} f / \partial t^{n}$ continuous at $t=t_{0}$. For a complete clarification we shall have to use again the field equations. This is very easily done in the electromagnetic case. Indeed, we derived from the Maxwell equations the result that the general
retarded nonradiative electromagnetic field will depend on t through the elementary functions $t^{\lambda}, \lambda=$ $0,1,2, \cdots$. But then it is seen at once that the derivative of order λ would be discontinuous on Σ. Therefore the nonexistence of a shock wave on Σ will really mean that the field must be stationary also above Σ.

THE GRAVITATIONAL FIELD

Gravitational shock waves have the same essential properties as the electromagnetic ones. ${ }^{11}$ It is therefore possible to repeat the reasoning we have developed for the electromagnetic field also in the case of the gravitational field. We shall in this way prove that the same theorem is valid for the gravitational field too.

We shall consider only gravitational fields which satisfy the usual boundary conditions,

$$
g_{\mu \nu} \rightarrow \eta_{\mu \nu} \text { for } r \rightarrow \infty .
$$

Therefore there will exist in them characteristic hypersurfaces Σ having the properties we have demanded before; they will have again an equation of the asymptotic form (9). We now assume that on a given Σ of this type there is a genuine gravitational shock wave of order 2 . The corresponding discontinuities of the second derivatives of $g_{\mu \nu}$ will be given by a formula similar to (12),

$$
\begin{equation*}
\left[g_{\mu \nu, \alpha \beta}\right]=\gamma_{\mu \nu} p_{\alpha} p_{\beta} \tag{19}
\end{equation*}
$$

p_{α} being again the normal to Σ, satisfying

$$
p_{\alpha} p^{\alpha}=0
$$

Further we shall assume that no apparent discontinuities exist on Σ : If such discontinuities would exist initially, we eliminate them by an appropriate coordinate transformation. Under these assumptions $\gamma_{\mu \nu}$ will behave as a tensor. Because of the Einstein equations, $R_{\mu \nu}=0$, the tensor $\gamma_{\mu \nu}$ will satisfy the following local conditions:

$$
\begin{equation*}
\gamma_{\mu \nu} p^{\nu}=0, \quad \gamma_{\mu \nu} g^{\mu \nu}=0 \tag{20}
\end{equation*}
$$

We shall not enter into a more detailed description of the structure of $\gamma_{\mu \nu}$, but only state the result according to which the necessary and sufficient condition for the existence of a genuine gravitational shock wave is

$$
\begin{equation*}
\gamma_{\mu \nu} \gamma^{\mu \nu} \equiv K>0 \tag{21}
\end{equation*}
$$

For the amplitude K we get again from the Einstein equations the following propagation relation:

[^48]\[

$$
\begin{equation*}
\left(K p^{\alpha}\right)_{i \alpha}=0 \tag{22}
\end{equation*}
$$

\]

Since we have assumed that $K>0$, we can rewrite Eq. (22) in the form

$$
\begin{equation*}
(\ln K)_{, \alpha} p^{\alpha}+p^{\alpha}{ }_{; \alpha}=0 \tag{22a}
\end{equation*}
$$

Now from the equation (9) of Σ we derive the asymptotic results:

$$
\begin{gathered}
p_{i \alpha}^{\alpha}=2 / r+\cdots \\
(\ln K)_{, \alpha} p^{\alpha}=\partial(\ln K) / \partial r+\cdots
\end{gathered}
$$

Hence, Eq. (22a) will take the form

$$
\partial(\ln K) / \partial r+2 / r+\cdots=0
$$

This has exactly the form of Eq. (17a) and will therefore lead to a similar result:

$$
\begin{equation*}
K=r^{-2} f(\theta, \varphi)+\cdots \tag{23}
\end{equation*}
$$

with $f(\theta, \varphi) \neq 0$. Going back to Eq. (21), we find finally that the discontinuity tensor γ_{μ} of a genuine gravitational shock wave will necessarily contain a (nonvanishing) term proportional to $1 / r$.

A similar result can be derived for the discontinuity of the Riemann tensor. In the case of a shock wave of order $n=2$ we have the relation

$$
\begin{align*}
2\left[R_{\mu \nu \alpha \beta}\right]=\gamma_{\mu \beta} p_{\nu} p_{\alpha} & +\gamma_{\nu \alpha} p_{\mu} p_{\beta} \\
& -\gamma_{\nu \beta} p_{\mu} p_{\alpha}-\gamma_{\mu \alpha} p_{v} p_{\beta} \tag{24}
\end{align*}
$$

Let n^{μ} be a vector with the properties

$$
\gamma_{\mu \nu} n^{\nu}=0, \quad p_{\mu} n^{\mu}=1
$$

Multiplying equation (24) by $n^{\nu} n^{\alpha}$ we find

$$
2\left[R_{\mu \nu \alpha \beta}\right] n^{\nu} n^{\alpha}=\gamma_{\mu \beta} .
$$

This relation shows that $\left[R_{\mu \nu \alpha \beta}\right]$ will necessarily contain a part proportional to $1 / r$, if there is a genuine shock wave of the order $n=2$ on Σ. We shall only mention that the same reasoning can be used in the case of a shock wave of order $n \neq 2$. The final result is that the derivatives of order $n-2$ of $R_{\mu \gamma \alpha \beta}$ will necessarily have discontinuities containing a part proportional to $1 / r$.

We now recall that the two assumptions, under which the theorem we want to prove should be valid, are the following: The gravitational field is stationary below Σ and nonradiative above Σ. This means that the curvature tensor will have no part proportional to $1 / r$ also in the region $r>a$. But then it follows immediately from our results that no genuine gravitational shock wave of any order can exist on Σ, or on any similar characteristic hypersurface situated above Σ.

The conclusion we have reached is of course weaker than the statement that the field should be stationary also above Σ. There is no doubt that in order to arrive at this statement one must get some additional help from the field equations. But we could not see how to obtain this result by using the exact Einstein equations.

It is of course quite easy to obtain this result with the help of the linearized Einstein equations of the first order. But such a simplified proof will no doubt be considered as not entirely satisfactory. It will therefore be sufficient if we indicate very briefly the main line of the reasoning without entering into the details of the calculations.
With the de Donder condition the field equation of first order is

$$
\begin{equation*}
\square_{1} g^{\mu \nu}=0 \tag{25}
\end{equation*}
$$

The first-order term of $R_{\mu \nu \alpha \beta}$ is linear in $i^{\prime \mu \nu}$ and will therefore satisfy the equation

$$
\begin{equation*}
\square_{1} R_{\mu \gamma \alpha \beta}=0 \tag{25a}
\end{equation*}
$$

We shall have to use the retarded solution of (25). This leads to relations similar to (4) and (5):

$$
\begin{align*}
{ }_{1} \mathrm{~g}^{\mu \nu} & =\sum_{n=1}^{\infty} \frac{1}{r^{n}} h^{\mu \nu}\left(t-r, \xi^{i}\right) \tag{26}\\
{ }_{1} R_{\mu \gamma \alpha \beta} & =\sum_{n=1}^{\infty} \frac{1}{r^{n}} h_{\mu \nu \alpha \beta}\left(t-r, \xi^{i}\right) \tag{26a}
\end{align*}
$$

Our assumptions are analogous to (8) and (8a):

$$
\begin{align*}
&{ }_{n} h_{\mu \nu \alpha \beta, 4}=0 \tag{27}\\
&{ }_{1} h_{\mu \nu \alpha \beta} \text { below } \Sigma \\
& \Sigma \\
& \text { everywhere. }
\end{align*}
$$

From these assumptions and the field equations (26a) we derive, with the help of the relation (10), exactly as in the electromagnetic case:

$$
{ }_{2} h_{\mu r \alpha \beta, 4}={ }_{3} h_{\mu \gamma \alpha \beta, 4}=\cdots=0 \text { everywhere; }
$$

i.e., the theorem has been proved.

We shall add a last remark. The quantity ${ }_{1} R_{\mu \nu \alpha \beta}$ is linear in the second derivatives of $1 g^{\mu \nu}$. It follows that in the case of a stationary field ${ }_{1} R_{\mu \nu \alpha \beta}$ will start with the term proportional to $1 / r^{3}$, i.e., we shall have also ${ }_{2} h_{\mu \nu \alpha \beta}=0$. This result can be derived from the equations (25a) combined with the Bianchi identity, ${ }_{1} R_{\mu \nu[\alpha \beta, \gamma]}=0$, and the symmetry relation ${ }_{1} R_{\mu \nu \alpha \beta}=$ ${ }_{1} R_{\alpha \beta_{\mu}}$. From the same equations we could also derive the detailed structure of ${ }_{3} h_{\mu \nu \alpha \beta}$. This corresponds to the fact that in the case of a stationary electromagnetic field one can derive from the two sets of Maxwell's equations firstly the vanishing of
the term of order $1 / r$ and then the detailed structure of the term of order $1 / r^{2}$, i.e., the relations

$$
{ }_{1} F_{\mu \nu}=0 ; \quad{ }_{2} F_{i 4}=\text { const } \xi^{i}, \quad{ }_{2} F_{i k}=0 .
$$

We shall not give any details as we feel that this kind of calculation is of little interest.

Though we have not found a fully satisfactory mathematical proof, it seems that there can be no doubt that the following theorem is valid: A gravitational field which is stationary below a hypersurface Σ and has no radiative part above Σ will be stationary everywhere. Or, equivalently, any gravitational field which is stationary below Σ and (essentially) nonstationary above Σ will necessarily contain emitted gravitational radiation. We recall that an equivalent conclusion is implicitly contained in the results of the discussion of the radiation problem obtained by Newman and Unti. ${ }^{\text {b }}$ The same conclusion should of course follow also from the calculations according to the method of Bondi, ${ }^{8}$ when it
will be possible to develop them to a higher approximation.

THE COMBINED GRAVITATIONAL AND ELECTROMAGNETIC FELD

We mention briefly that results similar to those obtained for the gravitational field will be valid also in the Einstein-Maxwell theory. The reason is that in this theory too there is a propagation relation having the same form as before ${ }^{11}$:

$$
\left\{(K+\kappa J) p^{\alpha}\right\}_{: \alpha}=0 .
$$

K and J are the amplitudes defined by (21) and (14) and κ is the gravitational constant. The important feature is that the quantity $K+\kappa J$ is again positivedefinite and will be necessarily nonzero for any genuine shock wave. The rest of the reasoning is essentially identical to that given for the electromagnetic or the gravitational field. The proof is again incomplete as in the gravitational case.

Backward Superconducting Switching*

Hirsh Cohen and Farouk Odeh
International Business Machines Corporation, Thomas J. Watson Research Cenier, Yorktown Heights, New York

(Received 9 March 1963)

Abstract

A discussion is given of the initial speeds at which superconducting material changes state according to the London electrody namics. These transitions are taken to occur in the form of phase boundary motions. Phase changes from the normal to the superconducting state and vice versa are considered for the cases in which the external magnetic field is radiated to the boundary of the superconducting material. A distinct difference is found in transition rates depending on whether the transition is from the superconducting or from the normal state. In another case considered, the transition from normal to super is studied when the superconducting materisl is bounded by a good conductor. In all cases, constant critical field is taken as the switching criterion. The mathematical treatment involves the approximate solution of free boundary problems and mixed hyperbolicparabolic boundary value problems.

1. INTRODUCTION

THE use of superconducting elements in computer switching devices requires knowledge of the dynamic behavior of superconducting materials as they change from the superconducting state to the normally conducting state. Although there has been an exceedingly fruitful development of the understanding of the fundamentals of superconductivity on a microscopic level in recent years, a time-dependent theory has not yet evolved. There is, however, a phenomenological model, that of London, which is known to be reasonably appropriate under certain limiting size and impurity requirements, and which can provide an electrodynamics theory. In fact, it appears to be customary to expect any theory of superconductivity to reduce, at least in form, to London theory when the ratio of the dimensions of the super conductor to an intrinsic parameter of the material, the penetration depth, becomes large. Ittner ${ }^{1}$ has suggested a method of retaining the simplicity of the London formulation while taking into account the necessary quantitative alterations that are known to occur as the ratio mentioned above becomes smaller. With this in mind, this paper treats some cases of dynamic super conductivity in the London electrodynamics. The model taken for the transition is that of a phase change and a phase boundary motion. It is understood, of course, that the phase boundary will, in reality, be a transition region, perhaps of the order of the coherence length. Thus, the moving interface in the problems discussed here will be understood as a limiting case of this region.

[^49]The transition speeds that occur when superconducting elements are transformed from one state to another by altering the external magnetic field have been calculated from the phase change model for the case in which a superconductor is switched to a normal conductor. The transition rates for bulk materials with zero penetration depth (when the ratio mentioned above is infinite) have been given both for the isothermal case ${ }^{2}$ and for the case in which eddy-current heating and latent heat are taken into account ${ }^{3,4}$. The effect of nonzero penetration depth on transition in bulk conductors (the ratio is large but finite) and in finite-width films has also been treated ${ }^{5,8}$ under isothermal conditions. The present report includes consideration of what might be called the backward switching problem, the isothermal change from the normal state to the superconducting state. The case taken up will be that of a halfspace of normal material at one edge of which a subcritical magnetic field is applicable.

The objective of the present study is to understand how, within the London theory, the superconducting region grows and expels magnetic flux from the normal region. Faber ${ }^{7}$ has experimented with initially normally conducting but supercooled rods, and has found that the superconducting state may be induced by locally reducing the magnetic field strength at a spot on the surface of the rod. In the experiments a linear superconducting filament was found to travel down the length of the rod, remaining on the surface. Next a sheath formed circumferentially on the surface and, finally, after the

[^50]sheath closed about the surface, a very slow penetration began towards the interior. The half-plane problem studied here may be considered to represent only the final stage. The rate at which the superconducting region moved into the normal portion of the rods was such that Faber could explain it only on the basis of an interstitial leaking outward of the flux. For any real material this is undoubtedly a part of the explanation. The question posed here, however, is what London theory predicts about the casting out of the magnetic field from the normal region. The rate of transition for this backward switching will be compared with the rate of transition from the superconducting to the normal state. Because only the half-plane is considered, the question of how long it takes to completely cast out flux from a finite body does not occur. In fact, the results obtained here show only how the transition process begins in each case.

The analysis quickly indicates that the external magnetic environment must be examined to understand backward switching. Section 2 of this paper, in which the equations and boundary conditions are derived, discusses this point. In Sec. 3, a particular external magnetic field, a magnetic signal propagated through a vacuum to the superconducting material, is considered. The transition is described in its initial phase. In Sec. 4, as a comparison, a superconducting half-space is switched to the normal state by the same sort of external driving field. Both of these analyses differ from previous transition studies in that a nonzero rise-time for the driving signal is allowed. In Sec. 5, a superconducting to normal transition is studied in the case that the external region is a good conductor. There have been several recent considerations of the behavior of superconductors in the neighborhood of highly conducting, but not superconducting, metals. ${ }^{8,9}$

Section 6 of the paper contains the results from some numerical examples that have been carried out. The idea has been only to exhibit a comparison of initial transition speeds for the various cases considered and not to make a comprehensive numerical study. It is shown that for bulk materials the transition produced by a signal radiated through a vacuum to the superconducting material depends on the risetime of the signal. For very fast rise-times, the penetration depth has little influence on the interface propagation rate in forward or backward switching. As the signal rise-times become slower, penetration effects take hold. It appears that the backward

[^51]switching process becomes slower than forward switching. In fact, the speed of the backward phase boundary decreases with the square root of the rise-time of the input. On the other hand, the forward motion appears to approach in the limit a simple function of the penetration depth. This indicates a rather definite difference in behavior of the two, which is discussed in Sec. 6.

It is difficult to compare the backward transition speed in the case in which the external region is a good (nonsuperconducting) conductor with previous results for the forward transition under a step-function driving field. As is explained in Sec. 5, other conditions are required for the backward switching to begin than in the forward case, and, therefore, additional parameters are presented in the calculation. Included in Sec. 6 is an indication of the speeds achieved in this case and in its asymptotic stage.

It should be borne in mind that the authors of this paper are aware of the limitations of London theory and its electrodynamics. One important limitation is its neglect of nonlinear effects which lead to a dependence of the penetration depth on the field as described, for example, by the GinzburgLandau ${ }^{10}$ equations. On the other hand, since there are no time-dependent Ginzburg-Landau equations at present, this paper has been done in the spirit of providing some insight into the mathematics of the London model as a limiting case of other, more inclusive, physical models.

Finally, it should be remarked that it is difficult to compare the results and proposals of Nethercott. ${ }^{11}$ The present calculations rely heavily on the phase boundary model, whereas Nethercott's ideas are to be associated with transition regions.

2. FORMULATION OF THE PROBLEM

The formulation of the problem follows closely on that given in Ref. 4. Consider a half-space, $x>0$, of superconducting material which for all time is held at a subcritical temperature. For $x<0$, let there be a half space of nonsuperconducting material (see Fig. 1). All magnetic fields will be taken to be perpendicular to the plane of the paper such that there are current and electric field components in the positive y direction only (see Fig. 1). Furthermore, H, the magnetic field, will be allowed to assume only positive values.

The magnetic field in the whole space, for $T<0$, is assumed to have attained a steady initial distribu-

[^52]tion. If this is such that at $x=0$ the field is below the critical value H_{0}, the region $x>0$ will be superconducting and there will be a field, $H^{+}(x, 0)$, in the region (essentially an exponentially decaying field); if it is above, the half-space will be normal and the field, $H^{+}(x, 0)$, is a constant. At $T=0$ the external field is altered so that the plane $x=0$ eventually or instantaneously has $H(0, T)=H_{\mathrm{c}}$. A transition front then moves into the right halfspace, and it is the initial behavior of this front that will be studied in the sections that follow. This initial behavior depends on $H^{+}(x, 0), H_{\text {o }}$, the external field ($x<0$), and the material constants. One of the interesting observations is that it is not always sufficient to specify only the value of the magnetic field along $x=0$, but it is also necessary to give information on the derivative, $H_{x}(0, T)$, or on the electric field, $E(0, T)$, along this line.

With reference to the equations given in London's book ${ }^{12}$ and in Ref. 4, it is possible to set out a boundary-value problem for the switching process described above. It is convenient to normalize the actual dimensional coordinate x with respect to some scale of distance, x_{0}. and also to normalize the time scale by a factor, $\left(x_{0}^{2} / c^{2}\right) 4 \pi \sigma^{N}$, so that the dimensionless variables are $z=x / x_{0}, t=T c^{2} / 4 \pi x_{0}^{2} \sigma^{N}$. c is the velocity of light and σ^{N} is the Ohmic conductivity in the normal region.

The differential equations that hold for the magnetic field in each of the three types of regions are as follows (,,+- 0 will be consistently taken to refer to these regions): superconducting region in the normal state,

$$
\begin{equation*}
H_{s z}^{+}=H_{t}^{+}+v_{0}^{-2} H_{t t}^{+} \tag{2.1}
\end{equation*}
$$

superconducting region,

$$
\begin{equation*}
H_{z z}^{-}=\alpha H^{-}+\beta H_{t}^{-}+v_{0}^{-2} H_{t t}^{-} ; \tag{2.2}
\end{equation*}
$$

nonsuperconducting (external) region,

$$
\begin{equation*}
H_{z z}^{0}=\beta^{0} H_{t}^{0}+v_{0}^{-2} H_{t t}^{0} \tag{2.3}
\end{equation*}
$$

Here $\beta=\sigma^{0} / \sigma^{N}$ and $\beta^{0}=\sigma^{0} / \sigma^{N}$, where σ^{s}, σ^{0} are the Ohmic conductivities in the super and external regions, respectively. $v_{0}=x_{0}\left(4 \pi \sigma^{N}\right) c^{-1}$ is the dimensionless wave velocity in the external region under the present normalization.

These are derived by using the Maxwell and London equations. $\alpha=4 \pi x_{0}^{2} / \Lambda c^{2}$ is the square of the ratio of the arbitrary distance scale and the London penetration depth.

[^53]Fig. 1. The moving supernormal boundary in the physical space.

Actually Eqs. (2.1), (2.2), and (2.3) will take on special forms for the particular problems studied below. The term resulting from the displacement current will be neglected in regions in which there is a large conductivity. Thus, Eqs. (2.1) and (2.2) become

$$
\begin{align*}
& H_{z z}^{+}=H_{t}^{+} \tag{2.1a}\\
& H_{z z}^{-}=\alpha H^{-}+\beta H_{t}^{-} \tag{2.2a}
\end{align*}
$$

Equation (2.3) will become

$$
\begin{equation*}
H_{z z}^{0}=\beta^{0} H_{t}^{0} \tag{2.3a}
\end{equation*}
$$

when the region exterior to the superconducting material has high conductivity (Sec. 5). However, it will reduce to

$$
\begin{equation*}
H_{z z}^{0}=v_{0}^{-2} H_{i t}^{0} \tag{2.3b}
\end{equation*}
$$

when the exterior region is taken to be a vacuum (Secs. 3 and 4).

The free boundary, the interface between normal and super regions will be given by $x=\xi(T)$, which becomes $\zeta(t)=\xi(T) / x_{0}$ in the dimensionless system. Across the free boundary the magnetic field is continuous and attains the critical value, H_{0}. (The actual switching criterion is thought to be somewhere between a critical field and critical current criterion. We adopt here the simplest critical field hypothesis.) The total current is not continuous however, across this interface nor is it continuous across the boundary $z=0$.

This is due, of course, to the presence of the supercurrent in the superconducting region. This discontinuity in the total current can be expressed as a single condition for the case in which the boundary moves into a half-infinite normal region (Fig. 2). This also represents the continuity of the electric field.

Fic. 2. (a) Magnetic fields and free boundary in physical space. (b) Moving boundary in $z-t$ space.

$$
\beta \partial H^{+}(\zeta(t), t) / \partial z-\partial H^{-}(\zeta(t), t) / \partial z
$$

$$
\begin{equation*}
=-\beta v_{0} E^{0}(0, t)-\frac{\partial H^{-}}{\partial z}(0, t)-\alpha \int_{0}^{\zeta(t)} H^{-}(z, t) d z \tag{2.4}
\end{equation*}
$$

For the case in which the boundary moves into a half-infinite superconducting region (Fig. 3), the current discontinuity at $z=\zeta(t)$ takes the form

$$
\begin{align*}
\beta \frac{\partial H^{+}}{\partial z}(\zeta(t), t)-\frac{\partial H^{-}}{\partial z} & (\zeta(t), t) \\
& =\alpha \int_{\zeta(t)}^{\infty} H^{-}(\gamma, t) d \gamma \tag{2.5}
\end{align*}
$$

Observe that because of the finite extent of the superconducting region in the first case [Eq. (2.4)], it is necessary to have information on both boundaries of the superconducting region. This occurs because the magnetic field is defined as an integral over the superconducting current density by the London equations. (In our notation the London equations are

$$
\frac{\partial j_{\mathrm{s}}}{\partial t}=\frac{x_{0} v_{0}}{\Lambda c} E^{-}, \frac{\partial j_{\mathrm{s}}}{\partial z}=-\frac{x_{0}}{\Delta c} H^{-}
$$

where j_{s} is the supercurrent; A is London's material constant.) In addition, because the two London rela-
tions are not identical in finite superconducting regions, Eq. (2.4) is not sufficient and must be augmented by the relation

$$
\begin{align*}
& -\partial H^{-} / \partial z(0, t)-\beta v_{0} E^{0}(0, t) \\
& \quad=v_{0} \alpha \int_{0}^{t} E^{0}(0, \gamma) d \gamma \tag{2.6}
\end{align*}
$$

This is applicable only in the case of a normal to superconducting transition when the superconducting region is finite.

Equations (2.4) and (2.5) provide the boundary conditions on the moving interface and Eq. (2.6) a supplementary one on the stationary interface, $z=0$. The other boundary and initial conditions are more easily stated in terms of the particular problems and are given in the succeeding sections.

In Ref. 5, a discussion was given of the behavior of the Eqs. (2.1a) and (2.2a) and the interface condition when $\alpha \rightarrow \infty$. This would be the case of zero penetration distance, and it would seem as though $H^{-} \rightarrow 0$. It was shown, however, that for the super to normal transition, a special interface condition holds when $\alpha \rightarrow \infty$, namely:

$$
\begin{equation*}
\partial H^{+}(\zeta, t) / \partial z=-H_{\mathrm{o}} d \zeta / d t \tag{2.7}
\end{equation*}
$$

(a)

Frc. 3. (a) Forward switching in physical space. (b) Forward switching in $z-t$ space.

Observe that $\partial H^{+} / \partial z<0$ and thus $d \zeta / d t>0$ for this super-to-normal case. In a similar manner, for a normal-to-super transition, one may obtain the same interface condition for $\alpha \rightarrow \infty$. But here $\partial H^{+} / \partial z$ must be >0. Thus, $H^{-} \rightarrow 0$ does not seem to be an appropriate approximation even for very large α for the "backward" transition since it implies a negative speed for the phase boundary.

3. BACKWARD SWITCHING BY A PROPAGATING MAGNETIC WAVE

The special case to be considered here is represented in Figs. 4(a) and 4 (b). The region $z<0$ is a vacuum so that Eq. (2.3b) applies. For $t<0$, there is a constant field H_{0} everywhere in the entire space where $H_{\mathrm{e}}>H_{\mathrm{c}}$. For $t \geq 0$, a source of magnetic field, located at $z=-l$, provides a signal $H^{0}(-l, t)=h^{*}(t) \leq H_{\mathrm{e}}$. At $t=\tau^{*}, h^{*}\left(\tau^{*}\right)=H_{0}$. The signal is propagated through the distance l to $z=0$ so that at $t=l / v_{0}$ the value of H on $z=0$ begins to decrease from $H_{\text {e }}$ toward H_{0} which it reaches at a certain time τ. Let the value of H on $z=0$ be $w^{*}(t)$ so that $w^{*}(\tau)=H_{0}$. At time τ, a superconducting front forms on $z=0$ and begins to propagate to the right. As the new region is formed, the field in it is governed by Eq. (2.2a) while in the normal region, $z>0$ for $t<\tau$ and $z>\zeta(t)$ for $t>\tau$, Eq. (2.1a) is to be applied. The boundary value problem may be summarized here, but it is first convenient to slightly alter the variables $H^{0}(z, t)$ and $H^{+}(z, t)$. Let

$$
\begin{align*}
u & =\left[H^{0}(z, t)-H_{\mathrm{e}}\right] / H_{\mathrm{c}}, \tag{3.1}\\
v & =\left[H^{+}(z, t)-H_{\mathrm{e}}\right] / H_{\mathrm{c}} . \tag{3.2}
\end{align*}
$$

Then for all $t>0,-l<z<0$,

$$
\begin{equation*}
u_{z z}=v_{0}^{-2} u_{t t} \tag{3.3}
\end{equation*}
$$

$u(-l, t)=\frac{h^{*}(t)-H_{\mathrm{e}}}{H_{\mathrm{o}}} \equiv h(t), \quad h\left(\tau^{*}\right)=\frac{H_{c}-H_{\mathrm{e}}}{H_{\mathrm{c}}}$,
$u(0, t)=\frac{w^{*}(t)-H_{\mathrm{e}}}{H_{\mathrm{c}}} \equiv w(t), \quad w(\tau)=\frac{H_{\mathrm{c}}-H_{\mathrm{e}}}{H_{\mathrm{c}}}$,

$$
\begin{gather*}
w(0)=0 \tag{3.6}\\
u(z, 0)=u_{t}(z, 0)=0
\end{gather*}
$$

For $\tau>t>l / v_{0}, z>0$

$$
\begin{gather*}
v_{z z}=v_{t} \tag{3.8}\\
v\left(z, l / v_{0}\right)=0 \tag{3.9}\\
v(0, t)=w(t) \tag{3.10}
\end{gather*}
$$

Fig. 4. (a) Backward switching by a propagating plane magnetic wave (physical space). (b) Backward switching by a propagating plane magnetic wave ($z-t$ space).

$$
\begin{equation*}
v(z, t) \rightarrow 0, \quad z \rightarrow \infty . \tag{3.11}
\end{equation*}
$$

For $t>\tau, z>\zeta(t)$

$$
\begin{gather*}
v_{z z}=v_{t} \tag{3.12}\\
v[\zeta(t), t]=\left(H_{\mathrm{c}}-H_{\mathrm{e}}\right) / H_{\mathrm{o}} \tag{3.13}
\end{gather*}
$$

$v(z, \tau)$ is prescribed by the solution of the problem for v in the region

$$
\tau>t>l / v_{0}, \quad z>0
$$

For $t>\tau, 0<z<\zeta(t)$

$$
\begin{equation*}
H_{z z}^{-}=\alpha H^{-}+\beta H_{t}^{-}, \tag{3.14}
\end{equation*}
$$

or if

$$
\begin{gather*}
q(z, t)=\exp \left[\alpha \beta^{-1}(t-\tau)\right] H^{-}(z, t) / H_{0}, \tag{3.15}\\
q_{z z}=\beta q_{t}, \tag{3.16}\\
q(0, t)=\exp \left[\alpha \beta^{-1}(t-\tau)\right] w^{*}(t) / H_{0}, \tag{3.17}\\
q(0, \tau)=1, \tag{3.18}
\end{gather*}
$$

$$
\begin{gather*}
q(\zeta(t), t)=\exp \left[\alpha \beta^{-1}(t-\tau)\right] \tag{3.19}\\
\zeta(\tau)=0 \tag{3.20}
\end{gather*}
$$

As was pointed out in the previous section, to these equations must be added two other conditions (2.4) and (2.6), which now take the form

$$
\begin{gather*}
\beta \frac{\partial v}{\partial z}(\zeta(t), t)-\exp \left[-\alpha \beta^{-1}(t-\tau)\right] \frac{\partial q}{\partial z}(\zeta(t), t) \\
=-v_{0} \beta e^{0}(0, t)-\exp \left[-\alpha \beta^{-1}(t-\tau)\right] \frac{\partial q}{\partial z}(0, t) \\
-\alpha \int_{0}^{\zeta} \exp \left[-\alpha \beta^{-1}(t-\tau)\right] q(\gamma, t) d \gamma \tag{3.21}\\
-\exp \left[-\alpha \beta^{-1}(t-\tau)\right] \partial q(0, t) / \partial z-\beta v_{0} e^{0}(0, t) \\
=v_{0} \alpha \int_{0}^{t} e^{0}(0, \gamma) d \gamma \tag{3.22}
\end{gather*}
$$

where $t>\tau$ and $e^{0}=E^{0} / H_{0}$.
This rather large set of equations and conditions may be broken up into the solution of three problems:
(1) For $t<l / v_{0}$, a wave propagates from $z=-l$ to $z=0$ and, obviously, one will find no disturbance in the region $z>0$.
(2) For $\tau>t>l / v_{0}$, wave motion carries the decreasing magnetic field to $z=0$. The value of the field on $z=0, w(t)$, decreases, and the magnetic and electric fields penetrate into the region $z>0$.
(3) For $t>\tau$, since the critical field value is obtained at $t=\tau$, a superconducting front begins and the region $z>0$ is devided into two sectors.

Before setting out on this program it is convenient to note that the electric field is given, as one approaches $z=0$ from $z<0$, by the expression
$e^{0}\left(0^{-}, t\right)=e^{0}\left(0^{-}, 0\right)-v_{0} \int_{0}^{t} \frac{\partial u}{\partial z}\left(0^{-}, \gamma\right) d \gamma$.
$e^{0}\left(0^{-}, 0\right)$ is equal to zero in the problem at hand.
(1) Now consider the solution of Eq. (3.3) subject to conditions (3.4), (3.5), (3.6), (3.7). It is most convenient to divide the region $-l<z<0, t>0$ into the sectors indicated by wavefront motion (i.e., the characteristics of the equation) and, in fact, the solution is only required in those sectors that border on $z=0$. In the region labeled 1, Fig. 4, which is characterized by the inequalities $z<0,\left(z-v_{0} t\right) \leq l$, $\left(z+v_{0} t\right) \geq 0$,

$$
\begin{equation*}
u=w\left[\left(z+v_{0} t\right) / v_{0}\right] \tag{3.24}
\end{equation*}
$$

In region 2, characterized by $z<0,\left(z-v_{0} t\right) \leq 2 l$, $\left(z+v_{0} t\right) \geq l$,

$$
\begin{align*}
& u=w\left(\frac{z+v_{0} t}{v_{0}}\right)-h\left(\frac{z+v_{0} t-l}{v_{0}}\right) \\
&+h\left(\frac{-z+v_{0} t-l}{v_{0}}\right) \tag{3.25}
\end{align*}
$$

At this point, as matter of convenience, it will be assumed that $2 l / v_{0}>\tau>l / v_{0}$. Solutions of the form exhibited for regions 1 and 2 can, of course, be written down quite simply for any such region.
(2) Turning to (3.8), a general solution for the equation may be written in the form
$v(\boldsymbol{z}, t)=\frac{\boldsymbol{z}}{2 \pi^{\frac{1}{2}}} \int_{0}^{t} \frac{\exp \left[-z^{2} / 4(t-\sigma)\right]}{(t-\sigma)^{\frac{3}{2}}} w(\sigma) d \sigma$.
Then, using Maxwell's equations,

$$
\begin{equation*}
e^{+}(0, t)=\frac{1}{v_{0} \pi^{\frac{2}{2}}} \int_{0}^{t} \frac{\partial w(\sigma)}{\partial \sigma} \frac{1}{(t-\sigma)^{\frac{3}{2}}} d \sigma \tag{3.27}
\end{equation*}
$$

Imposing the continuity of electric field condition $0 \leq t \leq l / v_{0}$, we get

$$
\begin{equation*}
-w(t)=\frac{1}{v_{0} \pi^{\frac{3}{2}}} \int_{0}^{t} \frac{\partial w(\sigma)}{\partial \sigma} \frac{1}{(t-\sigma)^{\frac{3}{3}}} d \sigma \tag{3.28}
\end{equation*}
$$

This integral equation has only the trivial solution $w \equiv 0$ and thus $v \equiv 0$ here as it must be. However, for $l / v_{0} \leq t \leq \tau$, the integral equation for $w(t)$ is $2 h\left(t-\frac{l}{v_{0}}\right)-w(t)$

$$
\begin{equation*}
=\frac{1}{v_{0} \pi^{\frac{1}{2}}} \int_{0}^{t} \frac{1}{(l-\sigma)^{\frac{1}{2}}} \frac{\partial w(\sigma)}{\partial \sigma} d \sigma \tag{3.29}
\end{equation*}
$$

The equation may be solved for $w(t)$ and yields for $l / v_{0} \leq t \leq \tau$,
$w(t)=2 v_{0} \int_{0}^{t} h\left(t-\frac{l}{v_{0}}-\sigma\right)$

$$
\begin{equation*}
\times\left[\frac{1}{(\pi \sigma)^{\frac{3}{3}}}-v_{0} \exp \left(v_{0}^{2} \sigma\right) \operatorname{erfc}\left(v_{0} \sigma^{\frac{3}{2}}\right)\right] d \sigma \tag{3.30}
\end{equation*}
$$

where $h(t) \equiv 0, t<0$.
The time τ may now be defined since it satisfies the condition

$$
\begin{align*}
& \frac{H_{0}-H_{\mathrm{e}}}{H_{0}}=2 v_{0} \int_{0}^{r} h\left(\tau-\frac{l}{v_{0}}-\sigma\right) \\
& \quad \times\left[\frac{1}{(\pi \sigma)^{\frac{1}{2}}}-v_{0} \exp \left(v_{0}^{2} \sigma\right) \operatorname{erfc}\left(v_{0} \sigma^{\frac{3}{2}}\right)\right] d \sigma \tag{3.31}
\end{align*}
$$

The solution in the region $z>0, l / v_{0}<t<\tau$ would now be obtained by inserting (3.30) into (3.26).
(3) For $2 l / v_{0}>t>\tau$, use must be made of the solution (3.25) and appropriate solutions for (3.8)
and (3.16). Now (3.21) and (3.22) must be imposed. However, the difficulty lies in the fact that the boundary $\zeta(t)$ is unknown. An exact solution in the superconducting and normal regions, $z>0$, cannot be written down. Thus, the following plan has been adopted: General expressions are written for the solutions in the two regions in terms of undetermined singularity distributions along the infinite z axis. Then the distribution, as well as the unknown boundary $\zeta(t)$ are expanded in ascending series in powers of $(t-\tau)$. In this manner boundary conditions may be satisfied during the starting phase of the switching process. Letting $(t-\tau)$ now be denoted by t^{\prime}, the solutions have the form

$$
\begin{gather*}
q(z, t)=\beta^{\frac{1}{2}} \int_{-\infty}^{+\infty} \frac{m(\sigma) \exp \left[-(z-\sigma)^{2} \beta / 4 t^{\prime}\right]}{2\left(\pi t^{\prime}\right)^{\frac{1}{2}}} d \sigma, \tag{3.32}\\
v(z, t)=\int_{-\infty}^{+\infty} \frac{\nu(\sigma) \exp \left[-(z-\sigma)^{2} / 4 t^{\prime}\right]}{2\left(\pi t^{\prime}\right)^{\frac{1}{4}}} d \sigma, \tag{3.33}\\
\zeta(t)=\zeta_{1} t^{\prime \frac{1}{2}}+\zeta_{1} t^{\prime}+\zeta_{3} t^{\frac{3}{2}}+\cdots, \tag{3.34}
\end{gather*}
$$

where the $\zeta_{n / 2}$ are constants, and

$$
\begin{equation*}
m(z)=\sum_{n=0}^{\infty} m_{n} z^{n} \tag{3.35}
\end{equation*}
$$

and

$$
\begin{align*}
\nu(z) & =\sum_{n=0}^{\infty} \nu_{n} z^{n} \quad \text { for } z<0 \tag{3.36}\\
& =\sum_{n=0}^{\infty} H_{n} z^{n} \quad \text { for } z>0 . \tag{3.37}
\end{align*}
$$

Here, $v(z, \tau)$ is known for $z>0$ so that the H_{n} are to be computed from (3.26) using (3.30).

Without going through all of the details, using conditions (3.17), (3.18), and (3.19), one finds

$$
\begin{gather*}
m_{0}=1, \tag{3.38}\\
m_{1} \zeta_{\mathfrak{3}}=0, \tag{3.39}\\
\left(2 m_{2} / \beta\right) H_{\mathrm{c}}=(\alpha / \beta) H_{\mathrm{o}} \\
+d w^{*}(0) / d t \quad\left(t^{\prime}=0 \Rightarrow t=\tau\right) \tag{3.40}\\
m_{1} \zeta_{1}+2 m_{2} / \beta=\alpha / \beta . \tag{3.41}
\end{gather*}
$$

Similarly, using (3.33), (3.36), (3.37), and (3.13) yields

$$
\begin{equation*}
H_{0}=\left(H_{\mathrm{o}}-H_{\mathrm{e}}\right) / H_{\mathrm{o}}=\nu_{0} . \tag{3.42}
\end{equation*}
$$

In order to obtain further information, as was mentioned earlier, (3.21) and (3.22) must also be used. This means computing derivatives of the expressions (3.32) and (3.33) and also the proper inte-
grals involved. Again, by expanding for small time ($t-\tau$), one finds

$$
\begin{gather*}
\zeta_{1}=0, \tag{3.43}\\
\nu_{1}=H_{1}, \tag{3.44}\\
\nu_{2}=H_{2}, \tag{3.45}\\
\zeta_{1}=-2 H_{2} / H_{1}, \tag{3.46}\\
v_{3}=\frac{1}{4} \pi^{3} \zeta_{3} H_{1}+H_{3} \tag{3.47}
\end{gather*}
$$

by using (3.21) and (3.13) together. From (3.22)

$$
\begin{equation*}
m_{1}=-\beta v_{0}\left[2 h\left(\tau-l / v_{0}\right)-w(\tau)\right] . \tag{3.48}
\end{equation*}
$$

Finally,

$$
\begin{align*}
\zeta_{3}= & \left\{-2 v_{0} h^{\prime}\left(\tau-l / v_{0}\right)\right. \\
& +\left(v_{0}+\zeta_{1}\right) \zeta_{1} B v_{0}\left[2 h\left(\tau-l / v_{0}\right)-w(\tau)\right] \\
& \left.-2 H_{2} \zeta_{1}-6 H_{3}\right\}\left(\frac{3}{4} \pi^{\frac{3}{2}} H_{1}\right)^{-1} . \tag{3.49}
\end{align*}
$$

Thus, ζ_{1} and ζ_{1} are known in terms of H_{1}, H_{2}, H_{3} and h and w. The H_{n} are by definition coefficients in the expansion of v about $z=0$ for $t=\tau$, so that, using (3.26),

$$
\begin{align*}
& H_{1}=-\frac{1}{\pi^{\frac{1}{2}}} \int_{0}^{\tau} \frac{1}{(\tau-\sigma)^{\frac{1}{2}}} \frac{\partial w}{\partial \sigma}(\sigma) d \sigma, \tag{3.50}\\
& 2 H_{2}=\partial w(\tau) / \partial t, \tag{3.51}\\
& 6 H_{3}=-\frac{1}{\pi^{\frac{1}{2}}} \int_{0}^{\tau} \frac{\partial^{2} w}{\partial \sigma^{2}} \frac{1}{(\tau-\sigma)^{\frac{1}{2}}} d \sigma . \tag{3.52}
\end{align*}
$$

Observe that (3.50) and (3.29) are nearly the same and easily define H_{1}.

To gain an idea of what these formulas mean recall first of all that from (3.34) and the definition of real time, $T=\left(x_{0}^{2} / c^{2}\right) 4 \pi \sigma^{N} t=\left(x_{0} / c\right) v_{0} t$, that

$$
\begin{align*}
\xi\left(T+x_{0} v_{0} \tau / c\right) & =x_{0} \zeta(t+\tau) \\
& =x_{0}\left[\left(\frac{c}{x_{0} v_{0}}\right)^{\frac{3}{3}} \zeta_{2} T^{\frac{2}{2}}+\frac{c}{x_{0} v_{0}} \zeta_{1} T\right. \\
+ & \left.\left(\frac{c}{x_{0} v_{0}}\right)^{\frac{3}{2}} \zeta_{\frac{3}{3}} T^{\frac{2}{2}}+\cdots\right] . \tag{3.53}
\end{align*}
$$

Further, consider a particular case for the driving signal, $h^{*}(t)$. Let $h^{*}(t)$ be the linear function

$$
h^{*}(t)=H_{0} \delta t+H_{\mathrm{a}}
$$

where $\delta<0$. Then

$$
\begin{equation*}
h(t)=\delta t . \tag{3.54}
\end{equation*}
$$

Then the expression for τ, the (dimensionless) time at which the critical field is first attained on $z=0$, is most easily given in terms of the quantity

$$
\begin{align*}
\bar{\tau} & =v_{0}\left(\tau-l / v_{0}\right) \tag{3.55}\\
\bar{\tau}^{2}-\frac{2}{\pi^{3}} \bar{\tau}+1-\frac{2}{\pi^{\frac{3}{2}}} & \exp \left(\bar{\tau}^{2}\right) \int_{\bar{\tau}}^{\infty} \exp \left(-\lambda^{2}\right) d \lambda \\
& =\frac{v_{0}^{2}\left(H_{\mathrm{e}}-H_{0}\right)}{2(-\delta) H_{0}} \equiv \mathfrak{H} \tag{3.56}
\end{align*}
$$

The quantities on the right are given, of course. In fact $\left(H_{*}-H_{0}\right) /(-\delta) H_{0}$ is nothing other than the time at which $h^{*}(t)$ becomes equal to H_{0}.

If

$B(\bar{\tau})=1-\frac{2}{\pi^{\frac{2}{2}}} \exp \left(\bar{\tau}^{2}\right) \int_{\bar{\tau}}^{\infty} \exp \left(-\lambda^{2}\right) d \lambda$,
then

$$
\begin{equation*}
\zeta_{1} / v_{0}=B(\bar{\tau})\left[2 \bar{\tau} / \pi^{\frac{1}{2}}-B(\bar{\tau})\right]^{-1} \tag{3.58}
\end{equation*}
$$

and

$$
\begin{align*}
\frac{\zeta_{3}}{v_{0}^{2}} & =[1-B(\bar{\tau}) \\
& \left.-\frac{\bar{\tau}}{v_{0} \pi^{3}} \int_{0}^{1} \frac{f(\bar{\lambda})}{(1-\lambda)^{\frac{1}{2}}} d \lambda\right]\left(\frac{3}{4} \pi^{\frac{3}{2}}\left[\bar{\tau}^{2}-\mathcal{K}^{-1}\right]\right)^{-1} \tag{3.59}
\end{align*}
$$

where

$$
\begin{gathered}
f(x)=(\pi x)^{-\frac{3}{2}}-v_{0} \exp \left(v_{0}^{2} x\right) \operatorname{erfc}\left(v_{0} x^{\frac{2}{2}}\right) \\
\bar{\lambda}=\left(\bar{\tau}^{2} / v_{0}^{2}\right) \lambda
\end{gathered}
$$

and

$$
\begin{equation*}
\mathfrak{H C}=\frac{1}{2} v_{0}^{2}\left(H_{\mathrm{e}}-H_{\mathrm{c}}\right) /(-\delta) H_{\mathrm{e}} \tag{3.61}
\end{equation*}
$$

The formulas (3.58) and (3.59) allow these coefficients to be computed for the special case of a linear input signal. The results of a sample calculation are recorded in Sec. 6 of this paper.

4. FORWARD SWITCHING BY A PROPAGATING MAGNETIC WAVE

In this section, the forward transition, from super to normal, will be calculated for the same external field behavior as in the backward switching problem of the previous section. This case is represented in Fig. 5. For $t<0$, there will be a subcritical field, $H_{0}<H_{0}$, imposed everywhere in the whole space. This means that for $z<0$, the field will be H_{0}, and for $z>0$, it will take on the half-space penetration distribution, $H_{0} \exp \left(-\alpha^{\frac{1}{2}} z\right)$. Then, at $t=0$, the field at $z=-l$ is raised so that it passes through H_{c}. This signal is propagated through the vacuum between $z=-l$ and $z=0$, as described in Sec. 3 and carries the increasing field to the boundary of the superconducting region. When the critical value is reached on this boundary, at $t=\tau$, a normal front begins to move into the region $z>0$. Again the whole problem may be broken up in three parts:

Fig. 5. Forward switching by a propagating plane magnetic wave ($z-t$ space).
(1) For $z<0$, the problem is quite similar to to that of 1^{0} in Sec. 3. Letting $u=\left[H^{0}(z, t)-H_{0}\right] H_{o}^{-1}$, we have

$$
\begin{align*}
u_{z z} & =v_{0}^{-2} u_{t t} \tag{4.1}\\
u(-l, t) & =\left[h^{*}(t)-H_{0}\right] / H_{\mathrm{o}} \equiv h(t)>0, \tag{4.2}\\
u(z, 0) & =u_{t}(z, 0)=0, \tag{4.3}\\
u(0, t) & =\left[w^{*}(t)-H_{0}\right] / H_{\mathrm{a}} \equiv w(t) \tag{4.4}
\end{align*}
$$

Then in region 1 ,

$$
\begin{equation*}
u=w\left[\left(z+v_{0} t\right) / v_{0}\right] \tag{4.5}
\end{equation*}
$$

and in region 2

$$
\begin{align*}
& u=w\left(\frac{z+v_{0} t}{v_{0}}\right)-h\left(\frac{z+v_{0} t-l}{v_{0}}\right) \\
&+h\left(\frac{-z+v_{0} t-l}{v_{0}}\right) \tag{4.6}
\end{align*}
$$

(2) In the superconducting region, if the magnetic field is $H^{\mathbf{0}}(z, t)$ and we define

$$
\begin{align*}
y(z, t)= & \left\{\left[H^{\mathrm{s}}(z, t)\right.\right. \\
& \left.\left.-H_{0} \exp \left(-\alpha^{\frac{1}{2}} z\right)\right] \exp \left(\alpha \beta^{-1} t\right)\right\} H_{0}^{-1}, \tag{4.7}
\end{align*}
$$

the equations and boundary conditions become, for $0 \leq t \leq \tau$.

$$
\begin{gather*}
y_{z z}=\beta y_{t}, \tag{4.8}\\
y(z, 0)=0, \tag{4.9}\\
y(0, t)=\left[w^{*}(t)-H_{0}\right] H_{0}^{-1} \exp \left(\alpha \beta^{-1} t\right) \\
\equiv w(t) \exp \left(\alpha \beta^{-1} t\right) \equiv g(t), \tag{4.10}\\
w(0)=0, \tag{4.11}\\
y(z, t) \rightarrow 0, \quad z \rightarrow \infty . \tag{4.12}
\end{gather*}
$$

Here $w^{*}(t)$ is the value of H^{*} at $z=0$.

The solution for $z>0,0 \leq t \leq r$, has the form
$y(z, t)=\frac{z \beta^{\frac{1}{2}}}{2 \pi^{\frac{1}{2}}} \int_{0}^{t} \frac{g(\sigma) \exp \left[-z^{2} \beta / 4(t-\sigma)\right]}{(t-\sigma)^{\frac{1}{2}}} d \sigma$.
At the boundary, $z=0$, for $t<\tau$, continuity of the electric field requires, for this case, that

$$
\begin{gather*}
V \int_{0}^{t} \frac{\partial u}{\partial z}\left(0^{-}, \gamma\right) d \gamma=\exp \left(-\alpha \beta^{-1} t\right) \frac{\partial y}{\partial z}\left(0^{+}, t\right) \\
+\alpha \int_{0}^{\infty} \exp \left(-\alpha \beta^{-1} t\right) y(\gamma, t) d \gamma \tag{4.14}
\end{gather*}
$$

where $V=v_{0} \times v_{0}^{\prime} . v_{0}$ is as previously defined (2.3) and $v_{0}^{\prime}=\left(4 \pi x_{0} / c\right) \sigma^{\circ}$. Using the solution (4.13), we obtain

$$
\begin{align*}
& V \int_{0}^{t} \frac{\partial u}{\partial z}\left(0^{-}, \gamma\right) d \gamma \\
&=-\frac{\beta^{\frac{1}{2}}}{\pi^{\frac{1}{2}}} \exp \left(-\alpha \beta^{-1} t\right) \int_{0}^{t} \frac{\partial g}{\partial \sigma} \frac{1}{(t-\sigma)^{\frac{1}{2}}} d \sigma \\
&+\frac{\alpha}{\beta^{\frac{1}{2}}} \frac{\exp \left(-\alpha \beta^{-1} t\right)}{\pi^{\frac{1}{4}}} \int_{0}^{t} \frac{g(\sigma)}{(t-\sigma)^{\frac{1}{2}}} d \sigma . \tag{4.15}
\end{align*}
$$

Thus in region 1, Fig. 5, the left-hand side is essentially $w(t)$, the equation is homogeneous in w, and its unique solution, for $0<t<l / v_{0}, z>0$, is $w \equiv 0$, as one would expect.

However, in region 2, inserting $\partial u / \partial z$ yields

$$
\begin{align*}
v_{0}^{\prime}\left(\frac{\pi}{\beta}\right)^{\frac{1}{2}} & \exp \left(\alpha \beta^{-1} t\right) \\
& =\int_{0}^{t} \frac{1}{(t-\sigma)^{\frac{1}{2}}}\left[\frac{\alpha}{\beta} g-\frac{\partial g}{\partial \sigma}\right] d \sigma . \tag{4.16}
\end{align*}
$$

Let

$$
\begin{equation*}
\exp \left(\alpha \beta^{-1} t\right) 2 h\left(t-l / v_{0}\right)=\bar{f}(t) \tag{4.17}
\end{equation*}
$$

Then

$$
\begin{align*}
-v_{0}^{\prime}\left(\frac{\pi}{\beta}\right)^{\frac{1}{2}}[g(t) & -\bar{f}(t)] \\
& =\int_{0}^{t} \frac{1}{(t-\sigma)^{\frac{1}{2}}}\left[\frac{\partial g}{\partial \sigma}-\frac{\alpha}{\beta} g\right] d \sigma . \tag{4.18}
\end{align*}
$$

This integral equation may be solved by using Laplace transforms. The solution is in terms of a double convolution.

$$
\begin{align*}
& g(t)=\int_{0}^{t}\left\{\int_{0}^{t-s} \frac{v_{0}^{\prime}}{\beta^{f}} \tilde{f}(t-s-\sigma)\right. \\
& \left.\times\left[\delta(\sigma)-\frac{c}{(\pi \sigma)^{\frac{1}{2}}}+c^{2} \exp \left(c^{2} \sigma\right) \operatorname{erfc}\left(c \sigma^{\frac{3}{2}}\right)\right] d \sigma\right\} \\
& \times\left[(\pi s)^{-\frac{1}{2}}+d \exp \left(d^{2} s\right) \operatorname{erfc}\left(-d s^{\frac{1}{2}}\right)\right] d s, \tag{4.19}
\end{align*}
$$

where

$$
\left\{\begin{array}{l}
c=\frac{1}{2}\left\{\left[v_{0}^{\prime 2} \beta^{-1}+4 \alpha / \beta\right]^{\frac{2}{2}}+v_{0}^{\prime} \beta^{-\frac{1}{2}}\right\}, \\
d=\frac{1}{2}\left\{\left[\nu_{0}^{\prime 2} \beta^{-1}+4 \alpha / \beta\right]^{\frac{1}{2}}-v_{0}^{\prime} \beta^{-\frac{1}{2}}\right\},
\end{array}\right.
$$

and $\delta(\sigma)$ is Dirac's delta function. At least formally this is the solution for $g(t), l / v_{0}<t>\tau$. At $t=\tau$, $g(\tau)=\exp \left(\alpha \beta^{-1} \tau\right)\left(H_{0}-H_{0}\right)$. Knowing $h(\tau)$, this gives an equation for τ.
(3) Again the stage is reached at which the free boundary begins. For simplicity, it is again assumed that $\tau<2 l / v_{0}$. Letting $r(z, t)=\left[H^{N}(z, t)-H_{0}\right] / H_{0}$ in the newly formed normal region, the boundaryvalue problem for r in the time interval $\tau<t<2 l / v_{0}$ is:

$$
\begin{gather*}
r_{z z}=r_{t} \tag{4.20}\\
r(0, t)=\left[w^{*}(t)-H_{0}\right] / H_{\mathrm{o}} \equiv w(t) \tag{4.21}\\
w(\tau)=\left[H_{\mathrm{o}}-H_{0}\right] / H_{c} \\
r(\zeta(t), t)=\left(H_{\mathrm{o}}-H_{0}\right) / H_{\mathrm{o}} \tag{4.22}
\end{gather*}
$$

For $y(z, t)$ with $\tau<t<2 l / v_{0}$,

$$
\begin{equation*}
y_{z z}=\beta y_{t}, \tag{4.23}
\end{equation*}
$$

$y(z, t)=\frac{z \beta^{\frac{1}{2}}}{\pi^{\frac{1}{3}}} \int_{0}^{t} \frac{g(\sigma) \exp \left[-z^{2} \beta / 4(t-\sigma)\right]}{(t-\sigma)^{\frac{1}{2}}} d \sigma$,

$$
\begin{align*}
& H_{\mathrm{c}} y(\zeta(t), t) \\
& \quad=\exp \left(\alpha \beta^{-1} t\right)\left\{H_{\mathrm{o}}-H_{0} \exp \left[-\alpha^{\frac{1}{3}} \zeta(t)\right]\right\} \tag{4.25}
\end{align*}
$$

where $\zeta(t) \equiv 0$ for $t<\tau$. It will be useful again to let $t^{\prime}=t-\tau, \zeta=\zeta\left(t^{\prime}\right)$, and then for $t^{\prime}=0, \zeta(0)=0$. The same calculational procedure will be adopted as was used in Sec. 3: $r(z, t)$ and $y(z, t)$ are defined by means of heat equation singularity distributions

$$
\begin{align*}
& r(z, t)=\int_{-\infty}^{+\infty} \frac{R(\sigma) \exp \left[-(z-\sigma)^{2} / 4 t^{\prime}\right]}{2\left(\pi t^{\prime}\right)^{\frac{1}{2}}} d \sigma \tag{4.26}\\
& y(z, t)=\beta^{\frac{4}{2}} \int_{-\infty}^{0} \frac{Y(\sigma) \exp \left[-(z-\sigma)^{2} \beta / 4 t^{\prime}\right]}{2\left(\pi t^{\prime}\right)^{\frac{1}{2}}} \\
& \quad+\beta^{\frac{1}{4}} \int_{0}^{\infty} \frac{\left.\mathscr{y}(\sigma) \exp \left[-(z-\sigma)^{2} \beta / 4 t^{\prime}\right]\right]}{2\left(\pi t^{\prime}\right)^{\frac{1}{2}}} d \sigma
\end{align*}
$$

Again $y(z, \tau)$ is known for $z>0$ so that $Y(\sigma)$ is known [in terms of (4.13) and (4.16)]. The conditions on y and r given above [(4.21), (4.22), (4.25)] are not sufficient to determine these functions and the free boundary ζ. The continuity of $E(z, t)$ at $z=\zeta\left(t^{\prime}\right)$ and $z=0$ must also be imposed. This gives two additional relations:

At $z=\zeta$

$$
\begin{array}{r}
\beta_{\cdot}^{\prime} \frac{\partial r}{\partial z}\left(\zeta\left(t^{\prime}\right), t\right)=\exp \left(-\alpha \beta^{-1} t\right) \frac{\partial y}{\partial z}\left(\zeta\left(t^{\prime}\right), t\right) \\
\quad+\alpha \int_{\zeta\left(t^{\prime}\right)}^{\infty} \exp \left(-\alpha \beta^{-1} t\right) y(\sigma, t) d \sigma \tag{4.28}
\end{array}
$$

At $z=0$,
$-\partial r(0, t) / \partial z=v_{0}\left[2 h\left(t-l / v_{0}\right)-w(t)\right]$.
Now the functions to be found will be expanded in power series and a solution sought for t^{\prime} small.

$$
\begin{align*}
R(\sigma) & =R_{0}+R_{1} \sigma+R_{2} \sigma^{2}+\cdots \tag{4.30}\\
Y(\sigma) & =Y_{0}+Y_{1} \sigma+Y_{2} \sigma^{2}+\cdots \tag{4.31}\\
\zeta\left(t^{\prime}\right) & =\zeta_{\frac{1}{2}} t^{\prime \frac{1}{2}}+\zeta_{1} t^{\prime}+\zeta_{3} t^{\prime \frac{3}{2}}+\cdots \tag{4.32}
\end{align*}
$$

Also the known function $Y(\sigma)$ is expanded

$$
\begin{align*}
& Y(\sigma)=Y_{0}+Y_{1} \sigma+Y_{2} \sigma^{2}+\cdots, \tag{4.33}\\
& Y_{0}=\left(H_{0}-H_{0}\right) \exp \left(\alpha \beta^{-1} \tau\right) / H_{\mathrm{c}} . \tag{4.34}
\end{align*}
$$

These expansions are inserted into (4.26) and (4.27), and condition (4.21) is found to be satisfied with

$$
\begin{align*}
& R_{0}=\left(H_{0}-H_{0}\right) / H_{0}, \tag{4.35}\\
& R_{2}=\left.\frac{1}{2}\left(\partial w / \partial t^{\prime}\right)\right|_{t^{\prime}=0} \tag{4.36}
\end{align*}
$$

Imposing (4.22) requires

$$
\begin{align*}
& R_{1} \zeta_{\frac{1}{2}}=0 \tag{4.37}\\
& R_{1} \zeta_{1}+\frac{R_{2}}{\pi^{\frac{1}{3}} \int_{-\infty}^{+\infty}(\zeta-2 \alpha)^{2} \exp \left(-\alpha^{2}\right) d \alpha=0} \tag{4.38}\\
& R_{1} \zeta_{1}+\frac{1}{\pi^{\frac{1}{2}}} \int_{-\infty}^{+\infty}\left[2 R_{2} \zeta_{1}\left(\zeta_{\frac{1}{1}}-2 \alpha\right)\right. \\
& \left.\quad+R_{3}\left(\zeta_{\frac{1}{2}}-2 \alpha\right)^{3}\right] \exp \left(-\alpha^{2}\right) d \alpha=0 \tag{4.39}
\end{align*}
$$

The continuity condition at $z=0$, (4.29) requires

$$
\begin{align*}
R_{1} & =-v_{0}\left[2 h\left(\tau-l / v_{0}\right)-w(\tau)\right] \tag{4.40}\\
6 R_{3} & =-v_{0}\left[2 h^{\prime}\left(\tau-l / v_{0}\right)-w^{\prime}(\tau)\right] \tag{4.41}
\end{align*}
$$

(Primes refer to forward derivatives with respect to the argument.) Thus, in (4.37), $\zeta_{1}=0$, and (4.38) is simplified. In a similar manner, using (4.22), (4.25), and (4.28), one obtains

$$
\begin{gather*}
Y_{0}=Y_{0}=\exp \left(\alpha \beta^{-1} \tau\right)\left(H_{0}-H_{0}\right) / H_{\mathrm{c}}, \tag{4.42}\\
Y_{1}=Y_{1}, \quad Y_{2}=Y_{2}, \tag{4.43}\\
\zeta_{1}=\frac{-2 Y_{2}-\exp \left(\alpha \beta^{-1} \tau\right) \cdot \alpha\left(H_{0}-H_{0}\right) / \beta H_{0}}{Y_{1}-\alpha^{1}\left(H_{0} / H_{\mathrm{c}}\right) \exp \left(\alpha \beta^{-1} \tau\right)}, \tag{4.44}
\end{gather*}
$$

and finally,

$$
\begin{equation*}
\zeta_{3}=\frac{4\left(Y_{3}-Y_{3}\right)}{\pi^{\frac{1}{4}} \beta^{\frac{1}{4}}\left(Y_{1}-\alpha^{\frac{1}{2}} \exp \left(\alpha \beta^{-1} \tau\right) H_{0} / H_{0}\right)} . \tag{4.45}
\end{equation*}
$$

The final expressions for ζ_{1} and ζ_{1} are similar to those obtained for the backward switching in Sec. 3. For the computation of ζ_{1}

$$
\begin{gather*}
\mathcal{Y}_{1}=\left.\frac{\partial y}{\partial z}\right|_{z=0}=-\left(\frac{\beta}{\pi}\right)^{\frac{z}{2}} \int_{0}^{\tau} \frac{1}{(\tau-\sigma)^{\frac{1}{2}}} \frac{\partial g}{\partial \sigma} d \sigma, \tag{4.46}\\
2 \mathrm{Y}_{2}=\left.\frac{\partial^{2} y}{\partial z^{2}}\right|_{z=0}=\left.\beta \frac{\partial g}{\partial \sigma}\right|_{\sigma=\tau}, \tag{4.47}
\end{gather*}
$$

where g is given by (4.19). Recall, however, that g is obtained from the integral equation (4.18). From the integral equation,

$$
\begin{gather*}
-\left(\frac{\beta}{\pi}\right)^{\frac{3}{3}} \int_{0}^{\tau} \frac{1}{(\tau-\sigma)^{\frac{1}{2}}} \frac{\partial g}{\partial \sigma} d \sigma=\frac{\beta}{v_{0}^{\prime}}\left[\frac{\partial g}{\partial t}(\tau)-\frac{\alpha}{\beta} g(\tau)\right] \\
-\left(\frac{\beta}{\pi}\right)^{\frac{1}{2}} \int_{0}^{\tau} \frac{1}{(\tau-\sigma)^{\frac{1}{2}}} \bar{f}(\sigma) d \sigma . \tag{4.48}
\end{gather*}
$$

Thus

$$
\begin{align*}
Y_{1} & =\frac{\beta}{v_{0}^{\prime}}\left[\frac{\partial g}{\partial t}(\tau)-\frac{\alpha}{\beta} g(\tau)\right] \\
& -\left(\frac{\beta}{\pi}\right)^{\frac{3}{3}} \int_{0}^{\tau} \frac{1}{(\tau-\sigma)^{\frac{1}{3}}}\left[\exp \left(\alpha \beta^{-1} \sigma \cdot 2 h\left(\sigma-\frac{l}{v_{0}}\right)\right]^{\prime} d \sigma .\right. \tag{4.49}
\end{align*}
$$

(The prime over the bracket in the last integral means differentiation with respect to σ.)

The formulas given above have been employed in computing the value of ζ_{1} for the case of a linear input signal. These may then be compared with similar values obtained for the "backward" process of Sec. 3. The results are described in Sec. 6.

5. BACKWARD SWITCHING BY A DISCONTINUOUS MAGNETIC FIELD

In this section another backward switching problem is considered. Here, however, the external region, $z<0$, is taken to be a good conductor. The governing equation for the magnetic field will then be

$$
\begin{equation*}
H_{z z}^{0}=\beta^{0} H_{t}^{0}, \quad\left(\beta^{0}=\sigma^{0} / \sigma^{N}\right) . \tag{2.3a}
\end{equation*}
$$

It is assumed, in deriving (2.3a) that σ^{0} is comparable to σ^{N} and that wave effects may be neglected. The particular external magnetic driving condition that is considered is one in which the field at $t=0$ is instantaneously changed from H_{0} to $H_{\alpha}<H_{0}<H_{\circ}$ for all $z<0$ and to $H_{0} \leq H_{\mathrm{o}}$ at $z=0$ (Fig. 6). A singularity is thus imposed at $t=0, z=0$, and one may expect the boundary motion to begin in in a singular fashion. This starting condition is imposed, however, in analogy to the problems which have been solved for the "forward" transition in which it is only necessary to specify the constant value of H on $z=00^{5,6}$

Fig. 6. Backward switching by a discontinuous external magnetic field ($z-t$ space).

Equation (2.4) for the conducting external region may be rewritten as

$$
\begin{align*}
\beta \frac{\partial H^{N}}{\partial z}(\zeta, t)- & \frac{\partial H^{s}}{\partial z}(\zeta, t) \\
= & \frac{\beta}{\beta^{0}} \frac{\partial H^{0}}{\partial z}(0, t)-\frac{\partial H^{s}}{\partial z}(0, t) \\
& -\alpha \int_{0}^{s(t)} H^{s}(z, t) d z . \tag{5.1}
\end{align*}
$$

The other conditions are :

$$
\begin{align*}
H^{s}(0, t) & =H_{0} \tag{5.2}\\
H^{s}(\zeta(t), t) & =H_{\mathrm{c}}=H^{N}(\zeta(t), t), \tag{5.3}\\
H^{N}(z, 0) & =H_{0} \tag{5.4}
\end{align*}
$$

The solution for the external region may be given without difficulty since it is of standard heat equation form:

$$
\begin{align*}
& H^{0}(z, t)=H_{a}-\frac{z\left(\beta^{0}\right)^{\frac{1}{2}}}{2 \pi^{\frac{1}{2}}} \\
& \quad \times \int_{0}^{t}\left(H_{0}-H_{a}\right) \frac{\exp \left[-z^{2} \beta^{0} / 4(t-\sigma)\right]}{(t-\sigma)^{\frac{1}{2}}} d \sigma \tag{5.5}
\end{align*}
$$

From this

$$
\begin{equation*}
\lim _{z \rightarrow 0^{-}} \frac{\partial H^{0}}{\partial z}=\frac{1}{\pi^{\frac{1}{2}}} \frac{\left(\beta^{0}\right)^{\frac{1}{2}}}{t^{\frac{1}{2}}}\left[H_{0}-H_{a}\right] . \tag{5.6}
\end{equation*}
$$

Setting $H^{S}(z, t)=\exp \left(-\alpha \beta^{-1} t\right) v(z, t)$ and introducing this and (5.6) into (5.1), we get

$$
\begin{align*}
& \beta \frac{\partial H^{N}}{\partial z}(\zeta, t)-\exp \left(-\alpha \beta^{-1} t\right) \frac{\partial v}{\partial z}(\zeta, t) \\
&= \frac{\beta}{\left(\beta^{0}\right)^{\frac{1}{2}}} \frac{1}{\pi^{\frac{3}{2}}} \frac{1}{t^{\frac{1}{2}}}\left(H_{0}-H_{a}\right)-\exp \left(-\alpha \beta^{-1} t\right) \frac{\partial v}{\partial z}(0, t) \\
&-\alpha \int_{0}^{\xi(t)} \exp \left(-\alpha \beta^{-1} t\right) v(z, t) d z \tag{5.7}
\end{align*}
$$

Note that v must now satisfy

$$
\begin{equation*}
v_{z z}=\beta v_{t} \tag{5.8}
\end{equation*}
$$

with $v(0, t)=\exp \left(\alpha \beta^{-1} t\right) H_{0}, v(\zeta(t), t)=\exp \left(\alpha \beta^{-1} t\right) H_{c}$, while H^{N} satisfies

$$
\begin{equation*}
H_{z z}^{N}=H_{t} \tag{5.8a}
\end{equation*}
$$

with $H(0, t)=H_{e}, H(\zeta(t), t)=H_{0}$.
At this point it is again necessary to turn to approximations. In this case, the small-time method is used to obtain the initial behavior. It is also possible to obtain a large-time approximation.

A. The Small-Time Approzimation

For very small times, since $\exp \left(-\alpha \beta^{-1} t\right) \sim 1$ and $\int_{0}^{5(t)} \exp \left(-\alpha \beta^{-1} t\right) v d z \sim o(1)$, it appears that a Stefan-like similarity condition will prevail. This is indicated by the presence of the $t^{-\frac{1}{2}}$ term on the right-hand side of (5.7). If $\zeta(t)$ is, as before, assumed to have the form

$$
\begin{equation*}
\zeta(t)=\zeta_{\frac{1}{2}} t^{\frac{1}{2}}+\zeta_{1} t+\zeta_{\frac{1}{2}} t^{\frac{1}{2}}+\cdots \tag{5.9}
\end{equation*}
$$

where the $\zeta_{i / 2}$ are constants. Then H^{N} and v will be taken as

$$
\begin{equation*}
H^{+}(z, t)=H^{+}\left(z t^{-\frac{1}{2}}\right), \quad v=v\left(z t^{-\frac{1}{2}}\right) \tag{5.10}
\end{equation*}
$$

All of these representations are for $t \ll 1$. Let $z t^{-\frac{1}{t}}=s$, then take

$$
\begin{equation*}
H^{+}=A_{1} \int_{s}^{\infty} \exp \left(-\frac{1}{4} w^{2}\right) d w+B_{1} \tag{5.11}
\end{equation*}
$$

and

$$
\begin{equation*}
v=A_{2} \int_{0}^{* \beta^{\sharp}} \exp \left(\frac{-w^{2}}{4}\right) d w+B_{2} \tag{5.12}
\end{equation*}
$$

where $A_{1}, A_{2}, B_{1}, B_{2}$ are constants. If, to these solutions the boundary and initial conditions are applied, it is found that the time-dependent boundary conditions cannot be exactly satisfied for constant values of A_{1}, A_{2}, and B_{2}. In this case the choice is made to allow A_{1}, A_{2}, and B_{2} to take on the timedependent values which do satisfy the boundary conditions. This, of course, means that the H^{+}and v of (5.11) and (5.12) are no longer exact solutions of (5.8) and (5.8a), but they will be approximate solutions for very small time. ${ }^{13}$ Bearing this in mind, we have

[^54]\[

$$
\begin{equation*}
B_{1}=H_{\mathrm{e}}, \quad A_{1}=\left(H_{\circ}-H_{\mathrm{e}}\right)\left[\int_{\zeta / t}^{\infty} \exp \left(\frac{-w^{2}}{4}\right) d w\right]^{-1} \tag{5.13}
\end{equation*}
$$

\]

and

$$
\begin{equation*}
B_{2}=H_{0} \exp \left(\alpha \beta^{-1} t\right), \quad A_{2}=\left(H_{0}-H_{0}\right) \exp \left(\alpha \beta^{-1} t\right)\left[\int_{0}^{\gamma \beta^{\mathrm{t} / 4}} \exp \left(\frac{-w^{2}}{4}\right) d w\right] \tag{5.13a}
\end{equation*}
$$

H^{+}and v in this form are now substituted into (5.7) and the terms expanded in powers of t^{2}. Without going into details, the results are as follows:

Using terms of order $t^{-\frac{1}{2}}$,

$$
\begin{equation*}
\frac{\left(H_{\mathrm{e}}-H_{0}\right) \exp \left[-\left(\frac{1}{2} \zeta_{3}\right)^{2}\right]}{\int_{\zeta_{1} / 2}^{\infty} \exp \left(-w^{2}\right) d w}+\frac{\left(H_{0}-H_{0}\right)\left(1-\exp \left[-\left(\frac{1}{2} \zeta_{3}\right)^{2} \beta\right]\right)}{\beta^{\frac{1}{2}} \int_{0}^{1 \zeta_{+} \beta^{\beta t}} \exp \left(-w^{2}\right) d w}-\frac{2}{\pi^{\frac{1}{2}}} \frac{\left(H_{0}-H_{a}\right)}{\left(\beta^{0}\right)^{\frac{1}{2}}}=0 \tag{5.14}
\end{equation*}
$$

This is a transcendental equation for $\zeta_{\frac{1}{2}}$ which may be solved numerically.

It is easy to show that for $\zeta_{\frac{1}{2}}$ to be positive, the condition

$$
\left(\beta^{0}\right)^{\frac{1}{3}}\left(H_{0}-H_{0}\right) /\left(H_{0}-H_{a}\right)<1
$$

must prevail. If this condition does hold, then there will exist a unique solution for $\zeta_{\mathfrak{k}}$. Furthermore, for a given value of $H_{0}-H_{c}$, the largest value of $\zeta_{\frac{1}{2}}$ will occur for $H_{\mathrm{s}}=H_{0}$. It is possible to choose H_{e}, H_{a}, H_{0}, and H_{a} so that ζ_{3} takes on any value between zero and infinity.

The next set of terms, of order t^{0}, yields a relation for ζ_{1}

$$
\begin{align*}
& \left(H_{\mathrm{o}}-H_{\mathrm{s}}\right) \frac{\exp \left[-\left(\frac{1}{2} \zeta_{0}\right)^{2}\right]}{D_{1}(0)}\left\{a+\frac{D_{1}^{\prime}(0)}{D_{1}(0)}\right\} \\
& \quad+\left(H_{\mathrm{o}}-H_{0}\right) \frac{\exp \left[-\left(\frac{1}{2} \zeta_{\mathrm{t}}\right)^{2} \beta\right]}{\beta^{\frac{1}{2}} D_{2}(0)}\left\{a+\frac{D_{2}^{\prime}(0)}{D_{2}(0)}\right\} \\
& =\frac{\left(H_{\mathrm{o}}-H_{0}\right)}{\beta^{\frac{1}{2}}} \frac{D_{2}^{\prime}(0)}{\left[D_{2}(0)\right]^{2}} \tag{5.15}
\end{align*}
$$

where

$$
\begin{gather*}
D_{1}(0)=2 \int_{35_{4}}^{\infty} \exp \left(-\alpha^{2}\right) d \alpha, \\
D_{1}^{\prime}(0)=-\zeta_{1} \exp \left[-\frac{1}{4}\left(\zeta_{\frac{1}{2}}\right)^{2}\right], \\
D_{2}(0)=2 \int_{0}^{\beta^{\frac{1}{4}\left(\zeta_{1} / 2\right)}} \exp \left(-\alpha^{2}\right) d \alpha, \\
D_{2}^{\prime}(0)=\zeta_{1} \beta^{\frac{1}{2}} \exp \left[-\frac{1}{4} \beta\left(\zeta_{\frac{1}{2}}\right)^{2}\right], \\
\quad a=\frac{1}{2} \zeta_{\frac{1}{2}} \zeta_{1} . \tag{5.16}
\end{gather*}
$$

Note that if $H_{0}=H_{0}$, then unless $\zeta_{1}=0$, there will be a relation for ζ_{3} which is incompatible with (5.14). Thus, for the case $H_{0}=H_{0}$, there will be
no term of order t. The process may now be continued to obtain higher-order terms.

Equations (5.14) and (5.15) may be solved numerically for ζ_{y} and ζ when $\left(H_{\mathrm{o}}-H_{\mathrm{o}}\right),\left(H_{\mathrm{o}}-H_{0}\right)$, $\left(H_{0}-H_{a}\right), \beta$, and β^{0} are given. This has been carried out and is described along with the other cases in Sec. 6.

B. Large-Time Expansion

The computation set out above holds for small values of time. In what follows an approximation is obtained for large values of αt. Again this discussion is very similar to the corresponding one in Ref. 4 so that details will not be given. The process will be to find a solution for large αt for $H^{s}(z, t)$ which satisfies to certain orders of approximation the boundary conditions and the differential equation. This solution is then inserted into (5.7) and a boundary-value problem for $H^{N}(z, t)$ is obtained. Again H^{0} is taken to be the function given in (5.5).

The large-time approximation is made with the idea in mind that when the superconducting region has spread somewhat into the half-space, the magnetic field value must still accommodate the boundary values, $H^{s}(0, t)=H_{0}$ and $H^{*}(\zeta(t), t)=H_{0}$. On the other hand, in the middle of its region, the value of $H^{\text {a }}(z, t)$ should be quite low. In fact, for very large values of αt, one may expect the magnetic field to be zero except near the boundaries. A solution will be sought, therefore, that has these properties. It is convenient to set $t=\beta t^{*}$. Then (2.2a) becomes

$$
\begin{equation*}
H_{z \varepsilon}^{-}=\alpha H^{-}+H_{i *} \tag{5.17}
\end{equation*}
$$

Now let

$$
\begin{align*}
H^{-}\left(z, t^{*}\right)=a(z, & \left.t^{*}\right) \exp \left[\alpha^{\dagger} \phi\left(z, t^{*}\right)\right] \\
& +b\left(z, t^{*}\right) \exp \left[\alpha^{3} \psi\left(z, t^{*}\right)\right] \tag{5.18}
\end{align*}
$$

and expand a, b, and ζ in negative half powers of α :

$$
\begin{align*}
& a\left(z, t^{*}\right)=a_{0}\left(z, t^{*}\right)+\frac{a_{1}\left(z, t^{*}\right)}{\alpha^{\frac{1}{2}}} \\
& +\frac{a_{2}\left(z, t^{*}\right)}{\alpha}, \tag{5.19}\\
& b\left(z, t^{*}\right)=b_{0}\left(z, t^{*}\right)+\frac{b_{1}\left(z, t^{*}\right)}{\alpha^{\frac{1}{4}}} \\
& +\frac{b_{2}\left(z, t^{*}\right)}{\alpha}+\cdots, \tag{5.20}\\
& \zeta\left(t^{*}\right)=w_{0}\left(l^{*}\right)+\frac{w_{2}\left(t^{*}\right)}{\alpha^{3}}+\frac{w_{1}\left(t^{*}\right)}{\alpha}+\cdots . \tag{5.21}
\end{align*}
$$

These expressions are substituted into (5.17) and into the boundary conditions that apply to H^{s} in (5.12) and (5.13). Like powers of α are equated with the following results:

$$
\begin{gather*}
\phi=-z, \tag{5.22}\\
\psi=z-\zeta\left(t^{*}\right), \tag{5.23}
\end{gather*}
$$

and

$$
\begin{align*}
& H^{-}\left(z, t^{*}\right)=H_{0} \exp \left(-\alpha^{\frac{1}{k}} z\right) \\
& \quad+H_{\mathbf{0}} \exp \left\{\gamma\left(z, t^{*}\right)\left[1+\omega\left(z, t^{*}\right)\right]\right\} \tag{5.24}
\end{align*}
$$

where

$$
\begin{align*}
& \begin{aligned}
\gamma\left(z, t^{*}\right)= & \frac{1}{2} w_{0}\left(t^{*}\right)\left(w_{0}\left(t^{*}\right)\right.
\end{aligned} \\
&\quad+z) \tag{5.25}\\
&+\alpha^{\frac{1}{3}}\left(z-\zeta\left(t^{*}\right)\right), \\
& \omega\left(z, t^{*}\right)=\frac{1}{2} \alpha^{-\frac{1}{2}}\left[\left(w_{0}-z\right)\left(\dot{w}_{1}-\frac{1}{4} \dot{w}_{0}^{2}\right)\right. \tag{5.26}\\
&-\left.\frac{1}{4} \ddot{w}_{0}\left(z-w_{0}\right)^{2}\right]+O\left(\alpha^{-1}\right)+\cdots .
\end{align*}
$$

Dots refer to differentiation with respect to t^{*}.
Inserting this into (5.7), we get

$$
\begin{align*}
& \frac{\partial H^{+}}{\partial z}(\zeta, t)=-H_{0} \zeta(t) \\
& \quad+\pi^{-\frac{1}{t}} t^{-\frac{1}{t}}\left(\beta^{0}\right)^{-\frac{1}{2}}\left(H_{0}-H_{a}\right)+O\left(e^{-\alpha^{t} \zeta}\right) \tag{5.27}
\end{align*}
$$

Observe that for $H_{0}=H_{a}$, there can be no forward motion of the boundary, as has been mentioned before.

The boundary value problem for H^{N} [Eqs. (5.8a) and (5.27)] is now a Stefan problem, and the solution can be written down as
$H^{+}(z, t)=\left(H_{0}-H_{e}\right)\left[\int_{t^{-}}^{\infty} \exp \left(-\frac{1}{4} \alpha^{2}\right) d \alpha\right]^{-1}$

$$
\begin{equation*}
\times \int_{z t-\frac{t}{}}^{\infty} \exp \left(-\frac{1}{4} \alpha^{2}\right) d \alpha+H_{\mathrm{e}} \tag{5.28}
\end{equation*}
$$

If $\zeta(t)=w_{0} t^{\frac{1}{2}}$, then this implies that

$$
\begin{gather*}
\exp \left(-\frac{1}{4} w_{0}^{2}\right)\left(H_{e}-H_{\mathrm{o}}\right)\left[2 \int_{\frac{1}{2} w_{0}}^{\infty} \exp \left(-\alpha^{2}\right) d \alpha\right]^{-1} \\
=-\frac{1}{2} w_{0} H_{0}+\left(\pi \beta^{0}\right)^{-\frac{1}{2}}\left(H_{0}-H_{a}\right) \tag{5.29}
\end{gather*}
$$

We observe here that, in order for w_{0} to be positive, the condition

$$
\left(\beta^{0}\right)^{\frac{1}{2}}\left(H_{\mathrm{a}}-H_{\mathrm{o}}\right) / H_{0}-H_{\mathrm{a}}=C<1
$$

must again prevail. If this condition holds, then there will exist a unique solution for Eq. (5.29), which, however, never exceeds the quantity

$$
\left(2 / H_{\mathrm{o}} \pi^{\frac{1}{2}}\right)\left[\left(\beta^{0}\right)^{\frac{1}{2}}\left(H_{0}-H_{\mathrm{o}}\right)-\left(H_{\mathrm{e}}-H_{\mathrm{o}}\right)\right] .
$$

Given $\beta^{0},\left(H_{\mathrm{a}}-H_{\mathrm{a}}\right),\left(H_{0}-H_{\mathrm{a}}\right)$ (such that $C<1$), Eq. (5.29) may be solved numerically. This has been carried out and is described with other results in Sec. 6.

6. NUMERICAL RESULTS

In this section numerical results for the three cases discussed in the preceding sections are given. Only first terms in the expansions have been produced.

For the "backward" switching-normal to supercomputations can be made directly from formula (3.58). Here, as in the forward switching case, only the linear input signal (3.54) has been considered. For forward switching it was found that the use of (4.19) in (4.44) was too complicated. Approximations were employed in solving the integral equation (4.18), which seemed suitable for the degree of accuracy needed in the comparison to be carried out here.
In particular, recalling (4.10) that $g(t)=$ $w(t) \exp \left(\alpha \beta^{-1} t\right)$, then the integral equation (4.18) may be rewritten as

$$
\begin{align*}
w(t) & -2 h\left(t-\frac{l}{v_{0}}\right) \\
& =-\frac{1}{v_{0} \pi^{\frac{1}{2}}} \int_{0}^{t} \frac{\exp [-\alpha(t-\sigma)]}{(t-\sigma)^{\frac{1}{2}}} \frac{\partial w}{\partial \sigma}(\sigma) d \sigma, \tag{6.1}
\end{align*}
$$

where now, specifically, $\beta=1$ and $v_{0}^{\prime}=v_{0}$. Approximate solutions for α large have the form

$$
\begin{align*}
& w(\tau)=2 \delta\left(\tau-\frac{l}{v_{0}}\right)\left[1-\left(\frac{1}{2 v_{0} l}\right)^{1}\right] \text { if } \frac{v_{0}}{l} \gg \alpha, \quad(6.2) \tag{6.2}\\
& w(\tau)=2 \delta\left(\tau-\frac{l}{v_{0}}\right)\left[1-\left(\frac{1}{2 v_{0} l}\right)^{\frac{1}{2}}\right. \\
&\left.\times\left[2 \int_{0}^{\alpha\left(\tau-l / 0_{0}\right) l} \exp \left(-\eta^{2}\right) d \eta\right]^{-1}\right] \text { if } v_{0} / l \sim \alpha . \tag{6.3}
\end{align*}
$$

Using these, \mathscr{Y}_{2} and \mathscr{Y}_{1} may be approximated for use in (4.44) and ζ_{1} calculated.

Instead of giving both $H_{\circ}-H_{\circ}$ and δ for the backward case or $H_{0}-H_{0}$ and δ for the forward it was easier to choose values of l. For all cases τ was arbitrarily taken to be $\tau=\frac{3}{2} l / v_{0}$ (see Figs. 4 and 5). v_{0} has a numerical value equal to 5×10^{9} $\mathrm{cm} / \mathrm{sec}$ for the cases in mind ($\sigma^{N}=10^{19} \mathrm{sec}^{-1}$, $\left.x_{0}=1 \mathrm{~cm}, c=3 \times 10^{10} \mathrm{~cm} / \mathrm{sec}\right)$. In addition, H_{0} and H_{e} were chosen so that

$$
\begin{equation*}
H_{0}=\frac{1}{3} H_{c}, \quad H_{\mathrm{e}}=3 H_{0} \tag{6.4}
\end{equation*}
$$

Then the calculations may be summarized in Table I.
It is clear that in the backward case (normal to super), as the rise time of the input signal, $1 / \delta$, increases, the initial speed of the transition decreases according to the relation $\zeta_{1} \sim \delta^{\frac{1}{2}}$. On the other hand, it can be shown that as δ decreases in the forward case (super to normal), ζ_{1} approaches $\frac{4}{3} \alpha^{\frac{1}{3}}$ as a limiting value.

A very definite difference between the starting speeds is thus brought out. Although this result applies only to the transient state and then only to its initial portion, it is probably also true that a steady state signal will meet with this kind of nonlinear behavior. In fact, if the incoming signal from the distance l were a sawtooth wave, the present analysis implies that the downward stroke of the wave would produce a slow-moving backward-phase boundary, whereas the upward portion would produce a faster one. This would hold except for the case where the slope is extremely steep, and here the transitions would move at about the same speed.

In the case of backward switching when the external region is a good but nonsuperconducting conductor, the pertinent variables are

Table I. Summary of calculating of $\zeta_{1} .^{*}$

		Backward	Forward
${ }_{1}$	${ }_{10} 0^{10}$	$\pi^{4} / 2^{5} \times 10^{5}$	$\pi^{\frac{1}{2}} 2^{S_{1}} \times 10^{5}$
100	10^{8}	$\pi^{\frac{1}{1} / 2} \times 10^{4}$	2.1×10^{4}
1000	10^{7}	$3 \pi^{\frac{1}{2} / 2 \times 10^{3}}$	1.4×10^{4}

[^55]\[

$$
\begin{aligned}
& p=\left(\beta^{0}\right)^{\frac{1}{2}}\left(H_{\mathrm{o}}-H_{\mathrm{c}}\right) /\left(H_{0}-H_{\mathrm{a}}\right), \\
& q=\left(\beta^{0}\right)^{\frac{1}{3}}\left(H_{\mathrm{o}}-H_{0}\right) /\left(H_{0}-H_{a}\right) .
\end{aligned}
$$
\]

Then, if one sets $E(x)=2 / \pi^{\frac{1}{2}} \int_{0}^{x} \exp \left(-\alpha^{2}\right) d \alpha$, with $\zeta_{f}=2 x$, the equation for x becomes

$$
p e^{-x^{2}} /[1-E(x)]+q\left(1-e^{-x^{2}}\right) / E(x)=1
$$

For $q=0$:

p	x
1.0	0
0.75	0.27
0.50	0.75
0.25	2.07.

For $q=1$:

p	x
1.0	0
0.75	0.145
0.50	0.345
0.25	0.65.

The values of x or ζ_{1} can be interpreted, of course, as a set of parabolas in the x, t plane, which will be modified by higher-order terms, as they are in Ref. 5.
In the asymptotic calculation for this case, the parameters are p again, as defined above, and

$$
Q=H_{\mathrm{o}} \pi^{\frac{1}{2}}\left(\beta^{0}\right)^{\frac{1}{1}} /\left(H_{0}-H_{a}\right) .
$$

For the special case $Q=2 \pi^{\frac{1}{2}}$ the following values are obtained:

p	x
0.75	0.057
0.50	0.121
0.25	0.196.

If one choses the particular values

$$
\beta^{0}=1, H_{0}-H_{a}=1, H_{0}-H_{0}=1, H_{0}=2
$$

then $q=1, Q=2 \pi^{\frac{3}{2}}$. For the same value of p, the values of x in the asymptotic case are much lower than in the initial portion. (Compare: $q=1, p=$ $0.75, x=0.145$ with $Q=2 \pi^{\frac{3}{2}}, p=0.75, x=0.57$.) This indicates the slowing down of the transition, which is to be expected as the superconducting region grows larger.

Structure of Fermion Density Matrices. II. Antisymmetrized Geminal Powers

A. J. Coleman
Department of Mathematics, Queen's University, Kingston, Ontario, Canada

(Received 12 October 1964)

Abstract

Functions which can be expressed as an antisymmetrized power of a single two-particle function (a geminal) occur in the BCS ansatz. They constitute a comparatively tractable generalization of a single Slater determinant. The second-order reduced density matrix and bounds on its eigenvalues are obtained for the most general such antisymmetrized geminal power (AGP). These eigenvalues are physically of great importance, being analogs, in an analysis of the wavefunction into pair states, of the one-particle occupation numbers of the independent-particle model. A necessary and sufficient condition is given that an alleged first-order reduced density matrix be derivable from an N-particle AGP function. It is shown that only for exceptional functions (called extreme) is the generating geminal of the AGP function an eigenfunction of the 2 -matrix. The extreme 2 -matrix is diagonalized explicitly and provides a vivid example of the fact that one-particle occupation numbers alone are unable to convey certain information of decisive significance about the wavefunction. The extreme 2-matrix satisfies the assumption basic to current theories of superconductivity.

I. INTRODUCTION

THE most formidable obstacle to the application of quantum mechanics to systems of more than two fermions is the difficulty of describing the wavefunction. If the description is attempted numerically then this difficulty increases exponentially with N, the number of particles. This purely mathematical difficulty is one of the chief justifications for the widespread appeal to the independent particle model and the Hartree-Fock approximation. As is wellknown, the overlap between a single Slater determinant and the wavefunction of any system with realistic interactions decreases exponentially with N. Already in 1935, the inadequacy of the independent particle picture was apparent to Eddington whose "added particle" discussed in Sec. 14.2 of his book ${ }^{1}$ and later called the "top particle" is a precursor of the current method of quasiparticles.
If $g(12)$ is an antisymmetric two-particle function of rank N (i.e., expressible by means of N oneparticle functions) then the antisymmetrized product $A_{N}[g(12) g(34) \cdots g(N-1, N)]$ is an N-particle function of rank N and, therefore, a single Slater determinant. If the rank of the geminal (a twoparticle function, as an orbital is a one-particle function) exceeds N, then the above function is more general than a single Slater determinant and appropriate for the analysis of a wavefunction into geminals when a particular geminal is more important than any other. Blatt ${ }^{2}$ has argued, quite cogently, that the assumption that the ground state

[^56]of a superconductor can be approximated by such an antisymmetrized geminal power (AGP) is the key hypothesis of the BCS-Bogoliubov-Quasi Chemical Equilibrium theories, being even more important than the approximate form assumed for the Hamiltonian.

Functions of AGP type also occurred in the paper, ${ }^{3}$ referred to as SFDM-I, where it was proved that only for extreme AGP functions does the largest eigenvalue, λ_{1}^{2}, of the 2-matrix (second-order reduced density matrix) approach its least upper bound. Penrose, ${ }^{4}$ Penrose and Onsager, ${ }^{5}$ and Yang ${ }^{6}$ have shown that "large" eigenvalues are associated, in ways still not fully understood, with a variety of condensation and long-range-order phenomena in superfluids and superconductors. Particularly noteworthy is Yang's argument that the assumption of off-diagonal-long-range-order (ODLRO) in the 2 matrix explains flux quantization in superconducting rings and that ODLRO is accompanied by a large value of λ_{1}^{2}.
In the present paper, we study the 1 -matrix and the 2-matrix of AGP functions of an even number of particles, N. It should not be difficult to extend our results to the case of N odd by the method of Sec. 7 of SFDM-I. Theorem 2.1 gives the AGP 2-matrix explicitly, and Theorem 2.2 provides new bounds on its eigenvalues. As announced in Sec. 7 of SFDM-I, Theorem 2.1 states that the natural orbitals of the AGP function g^{N} are the same as those of g. Theorem 3.2 gives a necessary and suf-

[^57]ficient condition that an alleged 1-matrix corresponds to an AGP function. In Sec. IV, extreme functions are characterized among all AGP functions by a rather surprising property which throws some light on the reason that geminals are so much harder to work with than orbitals.

We note also that Eq. (4.10) below, which seems to be a key assumption of current microscopic theories of superconductivity, is exactly valid for extreme AGP functions.

Theorem 4.2 achieves the diagonalization of the 2-matrix of an extreme AGP function and illustrates the fact that, contrary to our experience with wavefunctions of Slater type, there is essential information about a wavefunction which is not conveyed by the orbital occupation numbers alone. Thus the statement "To define an eigenstate of the whole system, it is sufficient to indicate which plane waves are occupied by means of a distribution function $n(k)$, " which occurs on p. 1 of Nozières' excellent book 7 is incorrect, in general. It is correct only for a single Slater determinant but the wavefunction of no known physical system is described correctly by a single Slater determinant. This misconception, which is a carryover of the inadequate description of atomic energy levels as single configurations, seems rather widespread among the devotees of second quantization and issues in unnecessary confusion verging on mysticism.

A subsequent paper, SFDM-III, on the statistics and energy of interacting fermions will enlarge on a recent note ${ }^{8}$ which announced a new form of Yang's criterion for the onset of super properties. In SFDMIV, we shall prove the theorem, announced in part at the Sanibel Island Conference and, completely, at the Institute for Advanced Studies in January 1964, giving necessary and sufficient conditions for the N-representability of the 2 -matrix.

In order to make this paper quasiindependent of SFDM-I, we review and refine the most important definitions. For an N-fermion system in a pure state Ψ, the density operator, D^{N}, or N-operator is an integral operator whose kernel is the N-matrix, $D^{N}\left(x ; x^{\prime}\right)=\Psi(x) \Psi^{*}\left(x^{\prime}\right)$ where x stands for the space and spin variables of all N particles; the 2-operator is an integral operator, $D^{2}=D^{2}(\Psi)$ whose kernel is the 2-matrix (two-particle reduced density matrix), $D^{2}\left(12 ; 1^{\prime} 2^{\prime}\right)=D^{2}\left(x_{1} x_{2} ; x_{1}^{\prime} x_{2}^{\prime}\right)=\int \Psi\left(x_{1} x_{2} \cdots x_{N}\right)$ $\Psi^{*}\left(x_{1}^{\prime} x_{2}^{\prime} x_{3} \cdots x_{N}\right) d\left(x_{3} \cdots x_{N}\right)$; the 1-matrix, $D^{1}(1 ;$ $\left.1^{\prime}\right)=\int D^{2}\left(x_{1} x_{2} ; x_{1}^{\prime} x_{2}\right) d x_{2}$; the p-matrix is defined

[^58]analogously; the natural p-states of Ψ are the eigenfunctions of D^{p}, are denoted by α_{i}^{p} and have corresponding eigenvalues $\lambda_{i}^{p} ; g$ is a geminal, that is a two-particle function; g^{N} is a normalized AGP function of N fermions obtained by antisymmetrizing $g(12) g(34) \cdots g(N-1, N)$. A one-particle function is called an orbital, so α_{i}^{1} are natural orbitals or norbs. The reader should distinguish carefully between $\lambda_{\sigma}, \lambda_{\sigma}^{1}$, and λ_{σ}^{2} which are, respectively, eigenvalues of $D^{1}(g), D^{1}\left(g^{N}\right)$, and $D^{2}\left(g^{N}\right)$. The number of nonzero eigenvalues of $D^{1}(g)$, counting their multiplicities is the rank, r, of g and of g^{N}. When r is finite it is even and we set $r=2 \mathrm{~s}$. We shall assume that N is even and define m by $N=2 m$. If $r<N, g^{N}=0$. The functions g and g^{N} are said to be extreme if λ_{σ} are all equal. The above definitions may be easily generalized to apply to ensembles.

II. THE AGP 2-MATRIX

It was proved by Blatt ${ }^{9}$ that the BCS ansatz is equivalent to taking a wavefunction of the form

$$
\begin{equation*}
\Psi=B^{m} \Psi_{0} \tag{2.1}
\end{equation*}
$$

where $m=\frac{1}{2} N, \Psi_{0}$ is the vacuum and

$$
\begin{equation*}
B=\sum \xi_{i} a_{2 i-1} a_{2 i} \tag{2.2}
\end{equation*}
$$

creates an arbitrary geminal (i.e., a two-particle function). In configuration space, Ψ is simply (7.1) of SFDM-I:

$$
\begin{align*}
\Psi= & g^{N}(12 \cdots N) \\
& =c_{N} A_{N}[g(12) g(34) \cdots g(N-1, N)] \tag{2.3}
\end{align*}
$$

where g is an arbitrary normalized geminal, A_{N} is the antisymmetrizer, and c_{N} is a normalization constant.

In the theory of exterior forms or Grassmann algebras such an expression is simply a power under exterior multiplication, whence our name antisymmetrized geminal power (AGP). If α_{i} are the orthonormal orbitals of g with eigenvalues λ_{i}, then, for $g(12)=-g(21)$ the eigenvalues are evenly degenerate, so that
$g(12)=\sum \xi_{i}\left[\alpha_{2 i-1}(1) \alpha_{2 i}(2)-\alpha_{2 i-1}(2) \alpha_{2 i}(1)\right]$,
where $\left|\xi_{i}\right|^{2}=\lambda_{2 i-1}=\lambda_{2 i}$.
To simplify our notation, we allow σ or τ to represent pairs of natural numbers consisting of an odd number and its successor. For $\sigma=\{2 i-1,2 i\}$, let

$$
\begin{equation*}
[\sigma]=(2)^{-\frac{1}{2}}\left[\alpha_{2 i-1}(1) \alpha_{2 i}(2)-\alpha_{2 i-1}(2) \alpha_{2 i}(1)\right] \tag{2.5}
\end{equation*}
$$

[^59]and
\[

$$
\begin{equation*}
\xi_{\sigma}=\xi_{i} ; \quad\left|\xi_{\sigma}\right|^{2}=\lambda_{\sigma}=\lambda_{2 i-1}=\lambda_{2 i} \tag{2.6}
\end{equation*}
$$

\]

Since g is normalized,

$$
\begin{equation*}
\sum \lambda_{i}=2 \sum \lambda_{\sigma}=1 \tag{2.7}
\end{equation*}
$$

and Eq. (2.4) may be abbreviated to

$$
\begin{equation*}
g=\sqrt{2} \sum \xi_{\sigma}[\sigma] . \tag{2.8}
\end{equation*}
$$

If the rank of $g, r=2 s$, is finite, σ assumes s distinct values. For N even, $N=2 m$, it is easily seen that
$g^{N}=\left(a_{m}\right)^{-1} \sum c\left(\sigma_{1} \sigma_{2} \cdots \sigma_{m}\right)\left[\sigma_{1} \sigma_{2} \cdots \sigma_{m}\right]$,
where $c\left(\sigma_{1} \cdots \sigma_{m}\right)=\prod \xi_{\sigma}$ for $\sigma \in\left\{\sigma_{1}, \sigma_{2}, \cdots \sigma_{m}\right\}$; the summation is on distinct m-tuples of σ which we assume are ordered ($\sigma_{1}<\sigma_{2}$ if $i \in \sigma_{1}, j \in \sigma_{2}$ with $i<j) ;\left[\begin{array}{lll}\sigma_{1} \sigma_{2} & \cdots & \sigma_{m}\end{array}\right]$ is a normalized Slater determinant; and a_{m} is the usual notation for the symmetric function of λ_{σ}, of weight m, defined by the generating function

$$
\begin{equation*}
\Pi\left(1+\lambda_{\sigma} t\right)=\sum a_{m} m^{m} \tag{2.10}
\end{equation*}
$$

For example, $a_{1}=\sum \lambda_{\sigma}, a_{2}=\sum_{\sigma<r} \lambda_{\sigma} \lambda_{\tau}$.
By Theorem 3.2 of SFDM-I, the 2 -matrix of g^{N}, $D^{2}\left(g^{N} \mid 12 ; 1^{\prime} 2^{\prime}\right)$, may be expanded in terms of α_{i} and therefore in terms of $[k l]$ and $\left.\left[k^{\prime}\right]^{\prime}\right]^{*}$, where

$$
\begin{array}{r}
\sqrt{2}[k l]=\alpha_{k}(1) \alpha_{l}(2)-\alpha_{k}(2) \alpha_{l}(1), \\
\sqrt{2}\left[k^{\prime} l^{\prime}\right]=\alpha_{k}\left(1^{\prime}\right) \alpha_{l}\left(2^{\prime}\right)-\alpha_{k}\left(2^{\prime}\right) \alpha_{l}\left(1^{\prime}\right) . \tag{2.12}
\end{array}
$$

If the expression (2.9) for g^{N} is substituted in the definition for D^{2}, by a straightforward calculation which employs the orthonormality of the α_{i}, we obtain the following result.

Theorem 2.1.

$$
\begin{equation*}
D^{2}\left(g^{N} \mid 12 ; 1^{\prime} 2^{\prime}\right)=\sum b(i j k l)[i j]\left[k^{\prime} l^{\prime}\right]^{*} \tag{2.13}
\end{equation*}
$$

where the summation is on $i<j$, and $k<l$ and where $b(i j k l)$ is zero except if
(a) $[i j]=[k l]=[\sigma] ; b(\sigma \sigma)=2 c \lambda_{a} a_{m-1}(\hat{\sigma})$,
(b) $\sigma \neq \tau: b(\sigma \tau)=2 c \xi_{\xi} \xi_{\tau}^{*} a_{m-1}(\hat{\sigma} \hat{\tau})$,
(c) $\sigma \neq \tau, \quad i \in \sigma, \quad j \in \tau: b(i j i j)$

$$
\begin{equation*}
=2 c \lambda_{\sigma} \lambda_{T} a_{m-2}(\hat{\sigma} \hat{\tau}), \tag{2.14e}
\end{equation*}
$$

with $c=\left[N(N-1) a_{m}\right]^{-1}$. The caret on $\hat{\tau}$ indicates that λ_{r} is omitted in the product (2.10) defining a_{m}, that is
$a_{m-1}(\hat{\sigma})=\partial a_{m} / \partial \lambda_{\sigma}$. and $a_{m-2}(\hat{\sigma} \hat{\tau})=\partial^{2} a_{m} / \partial \lambda_{\sigma} \partial \lambda_{\tau}$.
It follows from Theorem 2.1 that for g of finite rank, $r=2 s$, with respect to the basis $[i j], D^{2}$ is a partitioned matrix

$$
\left[\begin{array}{ll}
D_{11} & D_{12} \\
D_{21} & D_{22}
\end{array}\right]
$$

in which D_{11} is the $s \times s$ matrix given by (2.14a) and (2.14b), $D_{12}=D_{21}=0$, and D_{22} is the $2 s(s-1) \times$ $2 s(s-1)$ diagonal matrix whose non-zero terms are given by $(2.14 \mathrm{c})$. The basis $[i]$ has $s(2 s-1)$ terms.

It is instructive to check the coefficients (2.14a) and (2.14c) by evaluating $\operatorname{Tr}\left(D^{2}\right)$. Note that each coefficient (2.14c) occurs four times. For example if $\sigma=\{1,2\}, \tau=\{3,4\}$ then $b(1313)=b(1414)=$ $b(2323)=b(2424)$. Thus $\operatorname{Tr}\left(D^{2}\right)$ is $2 c$ times

$$
\begin{equation*}
\sum \lambda_{\sigma} a_{m-1}(\hat{\sigma})+4 \sum_{\sigma<\tau} \lambda_{\sigma} \lambda_{\tau} a_{m-2}(\hat{\sigma} \hat{\gamma}) . \tag{2.15}
\end{equation*}
$$

But

$$
\begin{aligned}
\sum \lambda_{\sigma} a_{m-1}(\hat{\sigma}) & =m a_{m} \text { and } 2 \sum_{\sigma<\gamma} \lambda_{\sigma} \lambda_{\tau} a_{m-2}(\hat{\sigma} \hat{\tau}) \\
= & \sum \lambda_{\sigma} \sum_{\tau \neq \sigma} \lambda_{r} a_{m-2}(\hat{\sigma} \hat{\tau}) \\
= & (m-1) \sum \lambda_{\sigma} a_{m-1}(\hat{\sigma})=m(m-1) a_{m} .
\end{aligned}
$$

Thus (2.15) equals $m(2 m-1) a_{m}$ and since $N=2 m$, $\operatorname{Tr} D^{2}\left(g^{N}\right)=c 2 m(2 m-1) a_{m}=1$.

The largest eigenvalue of D^{2}, λ_{1}^{2}, is of particular interest. By (7.8) of SFDM-I, we know that for even N greater than 3 ,

$$
\begin{align*}
& (N-1)^{-1}\left[1-(N-2) b_{N}\right] \\
& \leq \lambda_{1}^{2}<(N-1)^{-1} \tag{2.16a}
\end{align*}
$$

where

$$
\begin{equation*}
b_{N}=\operatorname{Tr}\left[D^{1}(g) D^{1}\left(g^{N-2}\right)\right] \tag{2.16b}
\end{equation*}
$$

The first inequality in (2.16a) provides a criterion for the onset of ODLRO to which we shall return in SFDM-III.

We use Theorem 2.1 to obtain a new bound on the eigenvalues of an AGP 2-matrix, which has some consequences to be discussed in Sec. V below and in SFDM-III.

Theorem 2.2. For an AGP system of $N=2 m$ fermions and rank $r=2 s$, suppose that the 2 -matrix is partitioned as above then, (i) the average of the eigenvalues of D_{11} is $[s(N-1)]^{-1}$, (ii) $2[N(N-1)]^{-1}$ is an upperbound for the eigenvalues of D_{22} and their average is $(m-1)[s(s-1)(N-1)]^{-1}$, (iii) the sum of any m eigenvalues of D_{11} or of D_{22} is bounded by $(N-1)^{-1}$.

Proof. By Theorem 2.1, the sum of the s eigenvalues of D_{11} is $2 c \sum \lambda_{g} a_{m-1}(\hat{\sigma})=2 c m a_{m}=(N-$ $1)^{-1}$. Thus, since $m \leq s$, (i) and the first half of (iii) follow immediately.

By Theorem 2.1, a typical eigenvalue of D_{22} is $2 c \lambda_{\sigma} \lambda_{\tau} a_{m-2}(\hat{\sigma} \hat{\tau}) \leq 2 c a_{m}=2[N(N-1)]^{-1}$. This latter value is attained for Slater-type functions for which $r=N$ and is therefore the best possible bound. Since $N-2=2(m-1)$ and $\operatorname{Tr}\left(D_{22}\right)=\operatorname{Tr}\left(D^{2}\right)-$ $\operatorname{Tr}\left(D_{11}\right)=1-(N-1)^{-1}=(N-2)(N-1)^{-1}$, the average of the $2 s(s-1)$ eigenvalues of D_{22} is given by (ii). Using the fact that $m \leq s$, (iii) follows easily from (i) and (ii).
Q.E.D.

Theorem 2.2 constitutes, for AGP systems, a considerable sharpening of SFDM-I (6.23) which states that $(N-1)^{-1}$ and N^{-1} are upperbounds for the individual eigenvalues of N-representable 2-matrices for N even and odd, respectively. Indeed, suppose one 2 -eigenvalue approaches arbitrarily close to $(N-1)^{-1}$, then Theorem 4.2 suggests that s must be large and thus by Theorem 2.2 all other eigenvalues are small. A somewhat similar "coupling" between the values of the pairon occupation numbers was noticed in a different context by Blatt and Matsubara.

III. THE AGP 1-MATRIX

In this section we obtain an explicit expression for the 1-matrix (one-particle reduced density matrix) of an arbitrary AGP system. We adopt the notation of Sec. II.

From Theorem 2.1 , setting $2=2^{\prime}$ and integrating, we obtain

$$
\begin{aligned}
& D^{1}\left(g^{N} \mid 1 ; 1^{\prime}\right)=\sum_{\sigma} c \lambda_{\sigma} a_{m-1}(\hat{\sigma}) P_{\sigma} \\
&+2 c \sum_{\sigma} \lambda_{\sigma} \sum_{\sigma \neq \sigma} \lambda_{\tau} a_{m-2}(\hat{\sigma} \hat{\tau}) P_{\sigma} \\
&= c \sum_{\sigma}(N-1) \lambda_{\sigma} a_{m-1}(\hat{\sigma}) P_{\sigma} \\
&=\left(N a_{m}\right)^{-1} \sum \lambda_{\sigma} a_{m-1}(\hat{\sigma}) P_{\sigma}
\end{aligned}
$$

where

$$
\begin{equation*}
P_{\sigma}=\alpha_{2 i-1}(1) \alpha_{2 i-1}^{*}\left(1^{\prime}\right)+\alpha_{2 i}(1) \alpha_{2 i}^{*}\left(1^{\prime}\right) \tag{3.1}
\end{equation*}
$$

for $\sigma=\{2 i-1,2 i\}$. Since $\operatorname{Tr}\left(P_{\sigma}\right)=2$,
$\operatorname{Tr}\left(D^{1}\right)=\left(N a_{m}\right)^{-1} 2 \sum_{\sigma} \lambda_{\sigma} a_{m-1}(\hat{\sigma})$

$$
=\left(N a_{m}\right)^{-1} 2 m a_{m}=1
$$

Theorem 3.1. For the arbitrary geminal g given by (2.4), the 1 -matrix, $D^{1}\left(g^{N} \mid 1 ; 1^{\prime}\right)$, of the AGP function g^{N} is given by

$$
\begin{equation*}
D^{1}\left(g^{N} \mid 1 ; 1^{\prime}\right)=\sum_{\sigma} \lambda_{\sigma}^{1} P_{\sigma} \tag{3.2}
\end{equation*}
$$

where P_{σ} is defined by (3.1) and

$$
\begin{equation*}
\lambda_{\sigma}^{1}=\left(N a_{m}\right)^{-1} \lambda_{\sigma} a_{m-1}(\hat{\sigma}) \tag{3.3}
\end{equation*}
$$

We recall that a_{m} and $a_{m}(\hat{\sigma})$ are defined in Theorem 2.1 and are such that

$$
\begin{equation*}
a_{m-1}(\hat{\sigma})=\partial_{\sigma} a_{m} \tag{3.4}
\end{equation*}
$$

where ∂_{σ} denotes the partial derivative with respect to λ_{g}. Thus

$$
\begin{equation*}
\lambda_{\sigma}^{1}=N^{-1} \lambda_{\sigma} \partial_{\sigma}\left(\ln a_{m}\right) \tag{3.5}
\end{equation*}
$$

The eigenvalues λ_{ρ}^{1} of $D^{1}\left(g^{N}\right)$ are related by (3.5) to the corresponding eigenvalues λ_{σ} of

$$
\begin{equation*}
D^{1}(g)=\sum \lambda_{\sigma} P_{\sigma} \tag{3.6}
\end{equation*}
$$

in such a manner that $\lambda_{\sigma}=\lambda_{\tau}$ implies $\lambda_{\sigma}^{1}=\lambda_{\tau}^{1}$. In particular for g^{N} of extreme type all λ_{g}, and therefore, all λ_{σ}^{1}, are equal, and for the 1 -matrices normalized to unity it follows that

$$
\begin{equation*}
\lambda_{\sigma}=\lambda_{\sigma}^{1}=r^{-1} \tag{3.7}
\end{equation*}
$$

where r is the rank of g.
Theorem S.2. Consider $\left(\lambda_{\sigma}^{1}\right)$ as a point in Euclidean space of s dimensions, then as λ_{σ} varies subject only to $\sum \lambda_{\sigma}=\frac{1}{2}, \lambda_{\sigma} \geq 0$, the point (λ_{σ}^{1}) given by (3.5) describes a hypersurface which we denote by S_{N}. A necessary and sufficient condition that a 1 -matrix be representable by the AGP function g^{N} is that its eigenvalues be evenly degenerate and, denoting them by λ_{σ}^{1}, that the point $\left(\lambda_{\sigma}^{1}\right)$ lie on S_{N}.

Proof. That the condition is necessary follows from Theorem 3.1. It is also sufficient. For we may denote two orthonormal eigenfunctions of $D^{1}(\Psi)$ corresponding to λ_{σ}^{1} by $\alpha_{2 i-1}$ and $\alpha_{2 i}$, then defining g by (2.4) with $\lambda_{2 i-1}=\lambda_{2 i}=\lambda_{\sigma}$ it follows that $D^{1}\left(g^{N}\right)=D^{1}(\Psi)$.
Q.E.D.

For $D^{1}(\Psi)$ satisfying Theorem 3.2, if λ_{σ}^{1} are distinct, then g will be uniquely determined apart from the phases of ξ_{i}. Thus Theorem 3.2 provides a good illustration of the remark in Sec. 5 of SFDM-I that the N-representability of a 1 -matrix can be characterized by conditions on its eigenvalues alone.

IV. EXTREME AGP FUNCTIONS

In SFDM-I, we called an AGP function $g^{N} e x$ treme if the eigenvalues of the 1-matrix of g were equal. As noted in Sec. III, the eigenvalues of $D^{1}\left(g^{N}\right)$ are then also equal, so that in the independent particle picture g^{N} corresponds to a system of N particles equally distributed over $2 s$ orbitals ($2 s \geq N$). For $2 s=N$ such systems are simply of Slater type, but for $2 s>N$ the same 1 -matrix arises from many different g and thus, as follows from Theorem 4.2, corresponds to systems which are markedly different
from one another even though in the independent particle picture they would be regarded as identical.

Extreme g^{N} are interesting because it was proved in SFDM-I (i) that $D^{2}\left(g^{N}\right)$ is an extreme point of the convex set of N-representable 2 -matrices if g and therefore g^{N} are of extreme type, ${ }^{10}$ and (ii) following Yang ${ }^{6}$ and Sasaki, ${ }^{11}$ that the least upper bound on the eigenvalues of N-representable 2-matrices is approached arbitrarily closely only by the largest eigenvalue of extreme AGP functions.

On the other hand, Theorem 4.3 of SFDM-I asserts that $\lambda_{1}^{p} \leq\left\langle\alpha_{1}^{p} \alpha_{1}^{\alpha} \mid A_{N}\left(\alpha_{1}^{p} \alpha_{1}^{\alpha}\right)\right\rangle$, where λ_{1}^{p} is the largest eigenvalue of $D^{p}(\Psi), \alpha_{1}^{p}$ and α_{1}^{α} are the corresponding eigenfunctions of $D^{p}(\Psi)$ and $D^{q}(\Psi)$ and A_{N} is the antisymmetrizer; equality obtains if and only if Ψ is proportional to $A_{N}\left(\alpha_{1}^{p} \alpha_{1}^{q}\right)$. It is therefore natural to ask for conditions under which an arbitrary geminal g is a natural geminal of g^{N}. In other words, when is g an eigenfunction of $D^{2}\left(g^{N}\right)$?

Theorem 4.1. The geminal g is an eigenfunction of $D^{2}\left(g^{N}\right)$ with nonvanishing eigenvalue if and only if g is of extreme type, that is if the eigenvalues of $D^{1}(g)$ are all equal.
Proof. Suppose that g is an eigenfunction of $D^{2}=D^{2}\left(g^{N}\right)$ with eigenvalue $\gamma, \gamma \neq 0$, then

$$
\begin{equation*}
D^{2} g=\gamma g \tag{4.1}
\end{equation*}
$$

With g given by (2.8) we find, using (2.14) that

$$
\begin{align*}
& D^{2} g=2 \sqrt{2} c \sum_{\sigma}\left[\lambda_{o} a_{m-1}(\hat{\sigma})\right. \\
& \tag{4.2}\\
& \left.\quad+\sum_{\tau \neq \sigma} \lambda_{r} a_{m-1}(\hat{\sigma} \hat{\tau})\right] \xi_{\sigma}[\sigma]
\end{align*}
$$

Substituting in (4.1), equating coefficients of [σ] and noting that $\xi_{0} \neq 0$, we obtain the s equations

$$
\begin{equation*}
2 c\left[\lambda_{\rho} a_{m-1}(\hat{\sigma})+\sum_{\gamma \neq \sigma} \lambda_{\tau} a_{m-1}(\hat{\sigma} \hat{\tau})\right]=\gamma . \tag{4.3}
\end{equation*}
$$

Arguing as in the lines following Eq. (2.15) and noting that $\lambda_{\sigma} a_{m+1}(\hat{\sigma})+a_{m}(\hat{\sigma})=a_{m}$, we see that (4.3) takes the form

$$
\begin{equation*}
2 c\left[a_{m}+(m-1) a_{m}(\hat{\sigma})\right]=\gamma . \tag{4.4}
\end{equation*}
$$

From (4.4) we easily conclude that for $\sigma \ngtr \tau$,

$$
a_{m}(\hat{\sigma})=a_{m}(\hat{\tau}),
$$

but this is precisely

[^60]and therefore,
$$
\lambda_{\tau}=\lambda_{\sigma} .
$$

When the condition of the theorem holds, using (4.3), and (4.8a, b) below, we obtain a result due originally to Yang. ${ }^{6}$

Corollary 4.1a. When the λ_{σ} are all equal the eigenvalue in Theorem 4.1 is given by

$$
\begin{equation*}
\boldsymbol{\gamma}=(N-1)^{-1}[1-(N-2) / r] . \tag{4.5}
\end{equation*}
$$

We may also use the above calculation to obtain a modified form of the important inequality (7.8) of SFDM-I. For g normalized, but otherwise arbitrary, the maximum eigenvalue λ_{1}^{2} of $D^{2}\left(g^{N}\right)$ is bounded below by $\left\langle g \mid D^{2} g\right\rangle$ and thus, by (2.8) and (4.2)

$$
\lambda_{1}^{2} \geq 4 c \sum_{\sigma} \lambda_{\sigma}\left[\lambda_{\sigma} a_{m-1}(\hat{\sigma})+\sum_{\tau \neq \sigma} \lambda_{\tau} a_{m-1}(\hat{\sigma} \hat{\sigma})\right]
$$

or

$$
\lambda_{1}^{2} \geq 4 c \sum \lambda_{\sigma}\left[a_{m}+(m-1) a_{m}(\hat{\sigma})\right] .
$$

Since $\sum \lambda_{\sigma}=\frac{1}{2}$ and $a_{m}(\hat{\sigma})=a_{m}-\lambda_{\sigma} a_{m-1}(\hat{\sigma})$, the last expression equals

$$
2 m c a_{m}-4(m-1) c \sum\left(\lambda_{\sigma}\right)^{2} a_{m-1}(\hat{\sigma})
$$

According to (3.3),

$$
\sum\left(\lambda_{\sigma}\right)^{2} a_{m-1}(\hat{\sigma})=N a_{m} \sum \lambda_{\sigma} \lambda_{\sigma}^{1}
$$

and

$$
2 \sum \lambda_{\sigma} \lambda_{\sigma}^{1}=\operatorname{Tr}\left[D^{1}(g) D^{1}\left(g^{N}\right)\right]=b_{N+2}
$$

by (2.16b). Noting that $N(N-1) a_{m} c=1$, we finally have

$$
\begin{equation*}
(N-1)^{-1}\left[1-(N-2) b_{N+2}\right] \leq \lambda_{1}^{2} \tag{4.6}
\end{equation*}
$$

For g of extreme type the expression on the left of this inequality attains the maximum $(N-1)^{-1}[1-$ $\left.r^{-1}(N-2)\right]$ of (4.5). We may thus conclude that, for arbitrary $g, b_{N+2} \geq r^{-1}$, and since the right side of this inequality is independent of N, we also have

$$
\begin{equation*}
b_{N} \geq r^{-1} \tag{4.7}
\end{equation*}
$$

The inequality (4.7) may be proved by elementary arguments using only the fact that $2 \sum \lambda_{\sigma}=1$.

An interesting unsolved question is the extent to which g is determined by g^{N} or $D^{2}\left(g^{N}\right)$. If $N=r$, g is almost totally undetermined, for in this case there is only one term in the sum (2.9) and any two geminals expressible by means of the same N orbitals lead to the same g^{N}. On the other hand, if g is extreme and $r>N$, then g is determined to within a phase factor as the eigenfunction of $D^{2}\left(g^{N}\right)$ corresponding to the largest eigenvalue.

The form we gave for $D^{2}\left(g^{N}\right)$ in Theorem 2.1 was partially diagonalized in the sense that $D_{12}=$ $D_{21}=0$. However, in the case of extreme g we can go farther and find all the eigenvalues of D^{2} explicitly. In this case g is necessarily of finite rank $r=2 s$ and $\lambda_{\sigma}=r^{-1}=\lambda$ say. We find that

$$
\begin{align*}
& a_{m} \quad=\binom{m}{m} \lambda^{m}, \tag{4.8a}\\
& a_{m-1}(\hat{\sigma})=\binom{0-1}{m-1} \lambda^{m-1}, \tag{4.8b}\\
& a_{m-2}(\hat{\sigma} \hat{\tau})=\left(\begin{array}{l}
\binom{-2}{m-2} \lambda^{m-2}, \\
\end{array}\right. \tag{4.8c}
\end{align*}
$$

so that the diagonal terms of D_{11} equal $2 m[s N(N-$ $1)]^{-1}=2[r(N-1)]^{-1}$; the off-diagonal terms of D_{11} equal $2 m(s-m)[s(s-1) N(N-1)]^{-1}=2(r-$ $N)[r(r-2)(N-1)]^{-1}$ and the diagonal terms of D_{22} equal $2 m(m-1)[s(s-1) N(N-1)]^{-1}=$ $2(N-2)[r(r-2)(N-1)]^{-1}$. The eigenvalues of D^{2} consist of the nonzero terms (2.14c) of D_{22} together with the eigenvalues of D_{11}. For $s=3, D_{11}$ has the form

$$
\left(\begin{array}{lll}
a & b & b \\
b & a & b \\
b & b & a
\end{array}\right)
$$

and characteristic equation

$$
\begin{gathered}
0=\left|\begin{array}{ccc}
a-x & b & b \\
b & a-x & b \\
b & a-x
\end{array}\right|=(a+2 b-x)\left|\begin{array}{ccc}
a-x & b & 1 \\
b & a-x & \frac{1}{1} \\
b & b & 1
\end{array}\right| \\
=(a+2 b-x)(a-b-x)^{2} .
\end{gathered}
$$

The preceding calculation is typical of the general case for which D_{11} has (i) one simple eigenvalue equal to $2[r(N-1)]^{-1}+(s-1) 2(r-N)[r(r-$ 2) $(N-1)]^{-1}=(N-1)^{-1}\left[1-r^{-1}(N-2)\right]$ and (ii) an eigenvalue of multiplicity $s-1$ equal to $2[r(N-1)]^{-1}-2(r-N)[r(r-2)(N-1)]^{-1}=$ $2(N-2)[r(r-2)(N-1)]^{-1}$.

Theorem 4.2. Suppose g^{N} is of extreme type with $r=2 s$, then $D^{2}\left(g^{N}\right)$ has
(i) 2-rank equal to $\frac{1}{2} r(r-1)$,
(ii) one simple largest eigenvalue equal to

$$
\begin{equation*}
(N-1)^{-1}[1-(N-2) / r] \tag{4.9a}
\end{equation*}
$$

and (iii) one other eigenvalue, of multiplicity $(2 s+1)(s-1)$, equal to

$$
\begin{equation*}
[2 / r(r-2)](N-2) /(N-1) \tag{4.9b}
\end{equation*}
$$

For $r \gg N$, it follows that the 2-matrix of a wavefunction of extreme type has one eigenvalue of order N^{-1}; all others are equal and of order r^{-2}.

It is noteworthy that for g^{N} of Slater type, for which $r=N$, the eigenvalues of D^{2} are all equal to $2[N(N-1)]^{-1}$ which, for fixed N, is the minimum of (4.9a) and the maximum of (4.9b).

For $r>2 N$, the largest eigenvalue (4.9a) is greater than $\frac{1}{2}(N-1)^{-1}$ and all others are less than $\frac{1}{2} N^{-2}$.

Combining the last two theorems, we easily identify the natural geminals for $D^{2}\left(g^{N}\right)$ when g is extreme.

Corollary 4.2a. For extreme g, the $\frac{1}{2} r(r-1)$ eigenfunctions of $D^{2}\left(g^{N}\right)$ span the same linear space as do the [ij] of Theorem 2.1; g is a natural geminal corresponding to the largest eigenvalue λ_{1}^{2} and the other natural geminals, corresponding to the one other eigenvalue, may be taken as any $\frac{1}{2}(r-$ 1) $(r-2)$ linearly independent geminals orthogonal to g.

Apart from the trivial case of a single Slater determinant, the Corollary 4.2 a provides us with the first completely explicit analysis of a 2 -matrix.

It may be easily verified that for extreme g, the following equation is exactly valid,

$$
\begin{align*}
D^{2}\left(g^{N} \mid\right. & \left.12 ; 1^{\prime} 2^{\prime}\right)=a\left[\mu\left(1 ; 1^{\prime}\right) \mu\left(2 ; 2^{\prime}\right)\right. \\
& \left.-\mu\left(1 ; 2^{\prime}\right) \mu\left(2 ; 1^{\prime}\right)\right]+b g(12) \bar{g}\left(1^{\prime} 2^{\prime}\right) \tag{4.10}
\end{align*}
$$

Here, $\mu=D^{1}\left(g^{N}\right),(r-2)(N-1) a=r(N-2)$, and $(r-2)(N-1) b=r-N$. We have remarked previously ${ }^{12}$ that the above equality is equivalent to what Blatt regards as the basic assumption common to the Bardeen-Cooper-Schrieffer, the Bogoliubov, and the Quasi Chemical Equilibrium theories of superconductivity. It seems incredible that the electron system of any real solid is described accurately by so simple a wavefunction as an extreme g^{N}. However, it is for extreme g^{N} that coherent pairing in one geminal is most intense. Apparently, such pairing is the key to an understanding of superconductivity, so that the success of the above theories suggests that an extreme g^{N} provides a good model for the crucial properties of the electron system of, at least, some metals near $0^{\circ} \mathrm{K}$.

v. DISCUSSION

We have dealt only with properties of the reduced density matrices which follow from the AGP form of the wavefunction avoiding any discussion of the energy of the system a topic to which SFDM-III will be largely devoted. Even so, the above theorems have immediate physical consequences and stimulate interesting speculation about condensation phenomena.

Part (iii) of Theorem 2.2 suggests that the antisymmetry of the total wavefunction forces a "cou-

[^61]pling" of the pairon occupation numbers such that if the occupation of one geminal approaches $(N-1)^{-1}$ all the others approach zero. Blatt and Matsubara ${ }^{13}$ found a similar phenomenon in a statistical context in which energy considerations were involved. For over a year, the author conjectured ${ }^{14}$ that Theorem 2.2 (iii) was valid for m eigenvalues of any N-representable 2-matrix. He has shown that it is true for $N=4$ and, in general, for λ_{i}^{2} associated with strongly orthogonal geminals. However, a counterexample for $N=6$ has disposed of the conjecture for arbitrary systems. Proofs will be given in SFDMIII. For fixed rank r, it is a well-defined, important but, to the author's knowledge, unsolved problem to evaluate the maximum of $\lambda_{1}^{2}+\lambda_{2}^{2}$. Is it less than or equal to $(N-1)^{-1}$ or, as the author expects, is its difference from $(N-1)^{-1}$ of order N^{-2} ? In view of Yang's discussion ${ }^{6}$ of ODLRO, it would appear that answers to the above questions will aid us greatly in speculations about condensation phenomena as we attempt to go beyond the BCS approximation.

As was briefly noted in Sec. 4, Theorem 4.1 implies that one-particle occupation numbers n_{i} are quite inadequate to describe the wavefunction of a system of particles in effective interaction. In the extreme case, since $D^{1}(g)$ is completely degenerate, the geminal g of Theorem 4.1 can be chosen in an infinity of ways leading to distinct $D^{2}\left(g^{N}\right)$ but to identical $D^{1}\left(g^{N}\right)$. For a realistic Hamiltonian, these different g^{N} will have different energies. In the usual treatment of BCS theory, the specifications needed, additional to n_{i}, are contained in the explicit definition of g. Thus in Valatin's discussion ${ }^{15}$ of the BCS approach as an extension of Hartree-Fock, a matrix \mathcal{K} is introduced which specifies both the 1 -matrix and Valatin's χ which replaces our g. Only in the case of a single Slater determinant for which the n_{i} are 0 or 1 do they give a complete description of a wavefunction. For any real system n_{i} are never 1. This had already been noticed in 1955 by P. O. Löwdin who, in private conversation with the author, remarked that he had been much struck by the fact that, in connection with his basic paper ${ }^{16}$ on density matrices, when he actually calculated the occupation numbers for the natural spin orbitals of an atomic

[^62]system none of them were really close to unity. Even though it is known that the ground state of an interacting macroscopic system of fermions has almost zero overlap with a single Slater determinant, much of the discussion of the independent particle model and of quasiparticles is pursued in a context which assumes that the n_{i} specify the relevant characteristics of the system. This seems highly questionable and suggests that despite their considerable successes these theories have not yet been given a solid logical foundation.

It is interesting to note from Theorem 4.1 that, except for the physically unlikely extreme case, the geminal g which generates the AGP function g^{N} is not a natural geminal of the system. Hence, there is a geminal other than g which is occupied more intensely than g. This observation underlies the author's recent criticism ${ }^{12}$.of Blatt's interpretation of Schafroth condensation.

The type of mathematics used in this paper and, more generally, appropriate for discussing antisymmetric systems was quite common knowledge among mathematicians in 1900 but subsequently went out of fashion. It was developed in connection with Grassmann algebra, Pfaffian forms, and the Cartan calculus. There is currently a resurgence of interest among mathematicians in the elementary parts of these theories but, to the author's knowledge, there is available no clear exposition of the known material slanted towards the needs of quantum physicists. Possibly the most useful references ${ }^{17}$ are to Weber, Slebodziński, Thomas, and Bourbaki.

ACKNOWLEDGMENTS

Most of the ideas for this paper originated while the author enjoyed the hospitality of the Quantum Chemistry Group of Uppsala University. He is particularly grateful to the Director of the Group, P.-O. Löwdin and to F. Sasaki and J. Linderberg, with whom he had several helpful conversations. The visit to Sweden was made possible by a travel grant from the National Research Council of Canada and the preparation of the final draft by a sabbatical term granted the author by Queen's University.

[^63]
Reduced Density Matrices of Quantum Gases. III. Hard-Core Potentials

Jean Ginibre
Laboratoire de Physique Theorique et Hautes Energies, Orsay, (S.-et.-O.), France
(Received 24 December 1964)

Abstract

In two previous papers, the reduced density matrices of quantum gases, in the grand canonical formalism and for suitably restricted interaction potentials, have been shown to be analytic vectorvalued functions of the activity in a neighborhood of the origin, to tend in some sense to well-defined limits as the volume of the system becomes infinite, and to satisfy a cluster decomposition property. The same results are extended here by the same methods to a wider class of potentials, including hardcore, and allowing attractive interactions, which were excluded previously.

INTRODUCTION

IN two previous papers ${ }^{1,2}$ (hereafter referred to as I and II), we have used a Wiener integral representation to study the reduced density matrices (RDM) of quantum gases, in the grand canonical formalism, both for Maxwell-Boltzmann (MB) and quantum statistics (QS). For particles interacting by a two-body potential satisfying suitable conditions (I, Sec. 1):
(a) The RDM are vector-valued analytic functions of the activity z in a neighborhood of the origin ($z=0$) (I, Sec. 3 and 6).
(b) The thermodynamical limit exists. More precisely, the RDM for finite volume V tend in some sense to well defined limits as the volume becomes infinite (I, Secs. 4 and 7).
(c) As a consequence of these properties, the virial expansion converges in a neighborhood of the origin.
(d) The RDM satisfy a cluster decomposition property (CP) in the form of an absolute integrability property of the quantum analogues of the Ursell functions (II).

The potential was supposed to be absolutely integrable, which excluded hard cores, and in the case of QS only, purely repulsive.

The present paper extends the above-mentioned results to hard-core potentials. As a consequence, it will be possible to introduce attractive potentials in the QS case. The class of potentials considered is defined more precisely in Sec. 1. We follow I and II closely and treat successively the MB (Secs. 2 and 3) and the QS case (Secs. 4 and 5). In Sec. 2, we show that the Kirkwood-Salzburg (KS) equations can be considered as a linear equation in a Banach space and use this property to prove the analyticity in z near the origin and the existence

[^64]of the infinite volume limit. In Sec. 3, we obtain bounds on the RDM directly and prove the CP. Sections 4 and 5 deal with the QS case and treat the same points in the same order. The notations (I.p.q), (II.p.q), and (p.q) refer to Eq. q of Sec. p of I, II, and the present paper, respectively.

1. CONDITIONS ON THE POTENTIAL (CF. I, SEC. 1)

We consider a system of identical particles in ν dimensional Euclidian space R^{ν}, interacting through a two-body potential ϕ with the following properties.
(a) ϕ is a real function which depends only on the difference $(x-y)$ of the positions x and y of the two interacting particles considered and is a symmetric function of these two variables or an even function of $x-y: \phi(x-y)=\phi(y-x)$.
(b) $\phi(x)=+\infty$ if $|x| \leq a$, i.e., ϕ has a spherically symmetric hard core of radius $a . \phi(x)$ is continuous for $|x|>a$ except possibly on a closed set F of capacity 0 (I, Appendix 1). F is harmless, as in I; it has no physical interest here.
(c) ϕ is absolutely integrable outside the hard core,

$$
\begin{equation*}
\int_{|x| \geq a}|\phi(x)| d x<+\infty . \tag{1.1}
\end{equation*}
$$

The restrictions on the growth of $|\phi|$ near the core which follow from (c) will be seen later on to be unessential.
(d) In the MB case, there exists a real constant $B \geq 0$ such that, for any system of different points $x_{i} \in R^{\nu}(i=1, \cdots, n)$,

$$
\begin{equation*}
\sum_{i<j} \phi\left(x_{i}-x_{i}\right) \geq-n B \tag{1.2}
\end{equation*}
$$

This implies in particular that ϕ is bounded from below by -2B. One can obtain better bounds on ϕ if ϕ is spherically symmetric. ${ }^{3}$ If ϕ never takes

[^65]the value $-\infty$, which can be imposed from the beginning, then (1.2) is automatically satisfied if for at least one pair $(i, j),\left|x_{i}-x_{j}\right|<a$.
(e) In the QS case only (cf. Ref. 4), there exists a real constant $B \geq 0$ such that for any finite sequence $x_{i} \in R^{v}, i=0,1, \cdots, n$, such that $\left|x_{i}-x_{i}\right| \geq a$ for all (i, j)
$$
\sum_{i=1}^{n} \phi\left(x_{0}-x_{i}\right) \geq-B .
$$

A sufficient condition for (e) to hold is that for $|x| \geq a, \phi(x)$ be bounded from below by a negative nondecreasing function of $|x|$ which is an integrable function of x. If (c) is satisfied, this happens in particular if there exists $r_{0} \geq a$ such that $\phi(x)$ is a monotonous function of $|x|$ for $|x| \geq r_{0}$ and is bounded from below for $|x| \leq r_{0}$. Condition (e) implies the following property:
Let $X^{\alpha}(\alpha=1, \cdots, m)$ be m families of j_{α} points. $X^{\alpha}=\left(x_{1}^{\alpha}, \cdots, x_{j_{\alpha}}^{\alpha}\right)$, such that for all $(\alpha, i) \neq(\beta, j)$, $\left|x_{i}^{\alpha}-x_{i}^{\beta}\right| \geq a$. Then

$$
\begin{align*}
& \sum_{\alpha=1}^{m} \sum_{1 \leq i<i \leq i \alpha} \phi\left(x_{i}^{\alpha}-x_{i}^{\alpha}\right) \\
& \quad+2 \sum_{\alpha<\beta} \sum_{i \leq i \alpha} \sum_{i \leq i \beta} \phi\left(x_{i}^{\alpha}-x_{i}^{6}\right) \geq-2 q B \tag{1.4}
\end{align*}
$$

where

$$
q=\sum_{\alpha=1}^{m} j_{\alpha} .
$$

In particular, if all the j_{α} are equal to one, (1.4) reduces to (1.2). Therefore, (e) \Rightarrow (d). Condition (1.4) which we need in that form later on, could be imposed independently of (e) with a different constant $B^{\prime} \leq B$ in the right-hand side. The corresponding changes in what follows would be obvious, and the improvement in the results negligible.

2. LIMIT OF INFINITE VOLUME IN THE MAXWELL-BOLTZMANN CASE

The notations are the same as in I. The Wiener integral representation of $\exp \left(-\beta H_{m}\right)$ and its continuity with respect to its arguments remain true for potentials satisfying (a) (b) (c) (d) (See Appendix 1). The RDM are defined by (I.2.7, 8, 9) and satisfy the KS equations (I.3.6, 7), which after symmetrization can be cast into the form of a linear equation (I.3.11, 12, 13) in the vector space E of sequences of Wiener integrable essentially bounded functionals of m trajectories ($m=0,1, \cdots$). Now however, the operator K is no longer a bounded

[^66]operator from E_{ξ} (defined by I.2.10) to itself (see below). We circumvent this difficulty by defining new Banach spaces G_{ξ} in which K is defined and bounded.

Let G be the complex vector space of sequences of functionals of m trajectories $\varphi=\left(\varphi\left(\omega^{m}\right), m=0,1, \cdots\right)$ such that for all $m, \varphi\left(\omega^{m \prime}\right)$ is integrable in the sense of $\int P_{x^{m}, y^{m}}\left(d \omega^{m}\right)$ [and $\int P_{x^{m}, x^{m}}\left(d \omega^{m}\right)$] for almost every (x^{m}, y^{m}) (and x^{m}), and the integral is a Lebesguemeasurable function of (x^{m}, y^{m}) (and x^{m}).

Let $\Delta(\omega)$ be a real positive, translation invariant, Wiener-integrable functional of one trajectory, bounded from below by $\Delta_{0}>0$, and define

$$
\begin{equation*}
\Delta\left(\omega^{m}\right)=\prod_{i=1}^{m} \Delta\left(\omega_{i}\right) \tag{2.1}
\end{equation*}
$$

Let $G_{\Delta} \subset G$ be the subspace of those $\varphi \in G$ for which

$$
\begin{equation*}
\|\varphi\|=\sup _{m} \operatorname{ess} . \sup .\left|\varphi\left(\omega^{m}\right)\right| / \Delta\left(\omega^{m}\right)<+\infty \tag{2.2}
\end{equation*}
$$

G_{Δ} is a Banach space with $\|\varphi\|$ as the norm of φ. G_{Δ} contains E_{ξ} for any $\xi \leq \Delta_{0}$, and the injection $E_{\xi} \rightarrow G_{\Delta}$ is continuous. Now let $\varphi \in G_{\Delta}$. From (I.3.13) we get:

$$
\begin{align*}
& \left|K \varphi\left(\omega^{m}\right)\right| \leq|z| e^{2 \beta B}\|\varphi\| \sum_{0}^{\infty} \frac{1}{n!} \\
& \quad \times \int P_{\nu^{n}, \nu^{n}}\left(d \bar{\omega}^{n}\right) d y^{n}\left|K\left(\omega, \bar{\omega}^{n}\right)\right| \Delta\left(\omega^{m-1}, \bar{\omega}^{n}\right) \\
& \quad \leq|z| e^{2 \beta B}| | \varphi| | \Delta\left(\omega^{m-1}\right) \\
& \quad \times \exp \left\{\int P_{y y}(d \bar{\omega}) d y|K(\omega, \bar{\omega})| \Delta(\bar{\omega})\right\} \tag{2.3}
\end{align*}
$$

where ω^{m-1} is obtained from ω^{m} by removing ω.
Suppose that for some $\xi>0$
$\xi \exp \left\{\int P_{y v}(d \omega) d y|K(\omega, \bar{\omega})| \Delta(\bar{\omega})\right\} \leq \Delta(\omega)$.
Then

$$
\begin{equation*}
\left|K_{\varphi}\left(\omega^{m}\right)\right| \leq\left(|z| e^{2 \beta B} / \xi\right)\|\varphi\| \Delta\left(\omega^{m}\right) \tag{2.5}
\end{equation*}
$$

Therefore, K is a bounded operator from G_{Δ} to G_{Δ} (one verifies that K preserves the relevant measurability properties), and its norm satisfies

$$
\begin{equation*}
\|K\|=k \leq|z| e^{2 \beta B} / \xi \tag{2.6}
\end{equation*}
$$

We are thus led to the problem of solving (2.4) for Δ and ξ, with ξ as large as possible. We first majorize the left-hand side of (2.4). Let $\bar{\omega}^{\prime}$ be the trajectory obtained from $\bar{\omega}$ by the translation $-y$. We note $\bar{\omega}=\bar{\omega}^{\prime}+y$. For any two trajectories ω_{1}, ω_{2}, we define $\omega_{1}-\omega_{2}$ by $\left(\omega_{1}-\omega_{2}\right)(t)=\omega_{1}(t)-\omega_{2}(t)$.

For any (continuous) ω, let $V(\omega)$ be the union of the family of spheres of radius a with centers at the points $\omega(t)(0 \leq t \leq \beta)$ and $v(\omega)$ the volume of $V(\omega)$. From translation invariance of Δ, we get

$$
\begin{align*}
& \int d y P_{\nu v}(d \bar{\omega})|K(\omega, \bar{\omega})| \Delta(\bar{\omega}) \\
& \quad=\int P_{00}\left(d \bar{\omega}^{\prime}\right) \Delta\left(\bar{\omega}^{\prime}\right) \int d y\left|K\left(\omega, \bar{\omega}^{\prime}+y\right)\right| \tag{2.7}
\end{align*}
$$

Now
$\int d y\left|K\left(\omega, \bar{\omega}^{\prime}+y\right)\right|$
$=\int d y\left|\exp \left[-\int_{0}^{\beta} \phi\left(\omega(t)-\bar{\omega}^{\prime}(t)-y\right) d t\right]-1\right|$.

The hard core contributes to this integral if $y \in$ $V\left(\omega-\bar{\omega}^{\prime}\right)$ and its contribution is $v\left(\omega-\bar{\omega}^{\prime}\right)$. One easily obtains (I.A2) a bound for the contribution of the region $y \notin V\left(\omega-\bar{\omega}^{\prime}\right)$. Finally,

$$
\begin{equation*}
\int d y\left|K\left(\omega, \bar{\omega}^{\prime}+y\right)\right| \leq v\left(\omega-\bar{\omega}^{\prime}\right)+A \tag{2.9}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\beta e^{2 \beta B} \int_{|x| \geq a}|\phi(x)| d x \tag{2.10}
\end{equation*}
$$

Instead of A one could also use the better bound
$\beta \int_{|x| \geq \alpha} \phi_{+}(x) d x+\frac{\left(e^{2 \beta B}-1\right)}{2 B} \int_{|x| \geq \alpha} \phi_{-}(x) d x$,
where

$$
\begin{equation*}
\phi_{ \pm}(x)=\max [\pm \phi(x), 0] . \tag{2.12}
\end{equation*}
$$

A sufficient condition for (2.4) to hold is, therefore, $\xi \exp \left\{\int P_{00}(d \bar{\omega})[v(\omega-\bar{\omega})+A] \Delta(\bar{\omega})\right\} \leq \Delta(\omega)$.
Let $\Delta(\omega)=\xi \exp [\varphi(\omega)]$. (2.13) becomes
$\varphi(\omega) \geq \xi \int P_{00}(d \bar{\omega})[\nu(\omega-\bar{\omega})+A] \exp [\varphi(\bar{\omega})]$.
(2.14) implies in particular that $\varphi(\omega) \geq 0$, and therefore, $\Delta_{0} \geq \xi$. The right-hand side of (2.14) is not bounded as a function of ω, therefore (2.14) has no solutions of the type $\varphi=$ const. This corresponds to the above-mentioned unboundedness of K operating in E_{ξ}. We show in Appendix 2 that there exists $\xi_{0}>0$ such that (2.14) has a minimum real positive solution φ_{ξ} for any ξ such that $0 \leq$ $\xi<\xi_{0}$ and no finite real positive solution for
$\xi>\xi_{0} . \varphi_{\xi}$ can be obtained by iteration from 0 , and is the value for $\xi \in\left[0, \xi_{0}[\right.$ of a function of (ξ, ω) analytic in ξ for $|\xi|<\xi_{0}$. For any $\xi \in\left[0, \xi_{0}[\right.$, let G_{ξ} be the G_{Δ} corresponding to $\Delta(\omega)=\xi \exp \left[\varphi_{\xi}(\omega)\right]$. $\Delta(\omega)$ is an integrable function of ω, and

$$
\begin{equation*}
f_{\beta}(y-x)=\int P_{x y}(d \omega) \Delta(\omega) \tag{2.15}
\end{equation*}
$$

is a (real positive) bounded integrable function of $(y-x)$ (Appendix 2). We write ess. $\sup f_{\beta}(x)=\left\|f_{\beta}\right\|_{\infty}$ and $\int f_{\beta}(x) d x=\left\|f_{\beta}\right\|_{1}$. It then follows from (2.6) and (2.13), that for any z such that

$$
\begin{equation*}
|z|<R=\xi \exp (-2 \beta B) \tag{2.16}
\end{equation*}
$$

Eq. (I.3.11) has a unique solution in G_{ξ}, which is analytic in z for $|z|<R$. Moreover, from $\|\zeta\| \leq$ $|z| / \Delta_{0} \leq|z| / \xi$, we get

$$
\begin{equation*}
\left\|\rho_{\Delta}\right\| \geq(1-k)^{-1}|z| / \xi \tag{2.17}
\end{equation*}
$$

It follows as in I that ρ_{A} as defined by (I.2.9) and (I.3.11) coincide for $|z|<R$. From (2.2), (2.17), and (I.2.8), we get
$\left|\rho_{\Delta}\left(x^{m}, y^{m}\right)\right| \leq(1-k)^{-1} \frac{|\vec{z}|}{\xi} \int P_{x^{m}, y^{m}}\left(d \omega^{m}\right) \Delta\left(\omega^{m}\right)$.
Therefore, $\rho_{\mathrm{A}}\left(x^{m}, y^{m}\right)$ is a bounded operator in $L^{2}\left(\Lambda^{m}\right)$, with

$$
\begin{equation*}
\left\|\rho_{\Lambda}\left(x^{m}, y^{m}\right)\right\|_{2} \leq(1-k)^{-1}(|z| / \xi)\left\|f_{\beta}\right\|_{1}^{m} . \tag{2.19}
\end{equation*}
$$

We now consider the limit $V \rightarrow \infty$ and show that the results of I, Sec. 4 remain true in the present case. The notations are the same as in I, Sec. 4 except for the replacement of $R, \delta, \delta^{\prime}$ by L, l, l^{\prime}, respectively. We consider first

$$
\left\|A_{L} K A_{L+l^{\prime}}-A_{L} K A_{L+l}\right\|:
$$

Let $\varphi \in G_{\xi}$. Then

$$
\begin{align*}
& \mid\left(A_{L} K A_{L+l}\right.\left.-A_{L} K A_{L+i}\right) \varphi\left(\omega^{m}\right) \mid \\
& \leq|z| e^{2 \beta B}\|\varphi\| \Delta\left(\omega^{m-1}\right) \alpha_{L}(\omega) \\
& \sum_{n=0}^{\infty} \frac{1}{n!} \int d y^{n} P_{y^{n}, y^{n}}\left(d \bar{\omega}^{-n}\right)\left|K\left(\omega, \bar{\omega}^{m}\right)\right| \tag{2.20}\\
& \times\left[\alpha_{L+l}\left(\bar{\omega}^{n}\right)-\alpha_{L+l}\left(\bar{\omega}^{n}\right)\right] \Delta\left(\bar{\omega}^{n}\right) \\
& \leq|z| e^{2 \beta B}\|\varphi\| \Delta\left(\omega^{m}\right) C_{l, L}(\beta), \tag{2.21}
\end{align*}
$$

where

$$
\begin{align*}
& C_{l, L}(\beta)=\frac{1}{\xi} \sup _{\omega} \alpha_{L}(\omega) \\
& \times \int d y P_{\nu \nu}(d \ddot{\omega})|K(\omega, \bar{\omega})| \Delta(\bar{\omega})\left[1-\alpha_{L+i}(\bar{\omega})\right] \tag{2.22}
\end{align*}
$$

We take $l>2 a$ and split the domain of the $\bar{\omega}$ integration into two parts:
(1) The $\bar{\omega}$ which stay entirely outside $\Lambda_{L+2 / 2}$. The hard core plays no role and their contribution is bounded by (see I, Appendix 2)

$$
\begin{equation*}
\xi^{-1} \beta e^{2 \beta B} \int_{|x|>l / 2}|\phi| d x \int P_{00}(d \bar{\omega}) \Delta(\bar{\omega}) . \tag{2.23}
\end{equation*}
$$

(2) The $\bar{\omega}$ which have points inside $\Lambda_{L+l / 2}$ belong to $K^{\prime}\left(\frac{1}{2} l, \beta\right)$ (I.A1-A5). The same method that led to (2.8) gives for their contribution the bound

$$
\begin{equation*}
\xi^{-1} \sup _{\omega} \alpha_{L}(\omega) \int_{K^{\prime}(l / 2, \beta)} P_{00}(d \bar{\omega})[\nu(\omega-\bar{\omega})+A] \Delta(\bar{\omega}) . \tag{2.24}
\end{equation*}
$$

The integration of the term containing $v(\omega-\bar{\omega})$ can even be restricted to $K^{\prime}(l-a, \beta)$. (2.23) does not depend on L and $\rightarrow 0$ as $l \rightarrow \infty$. (2.24) depends on L through $\alpha_{L}(\omega) \times v(\omega-\bar{\omega})$ and is an increasing function of L. We show in Appendix 2 that it $\rightarrow 0$ as $l \rightarrow \infty$ for $L=L_{0}+p l$, where L_{0} and p are real positive constants. From this and (2.21) it follows that

$$
\begin{equation*}
\left\|A_{L} K A_{L+l^{\prime}}-A_{L} K A_{L+l}\right\| \leq \eta(l, L) \tag{2.25}
\end{equation*}
$$

where $\eta(l, L)$ is an increasing function of L for fixed l, and such that $\eta(l, L+p l) \rightarrow 0$ as $l \rightarrow \infty$ for fixed $L>0, p>0$.

Lemma 1 (I, Sec. 4) and the end of its proof are then valid with the only change that the limit is now in the sense of the G_{ξ} topology. In contrast to the preceding case (I) and due to the effective L dependence of the bound (2.25), the limit as $l \rightarrow \infty$ is no longer uniform in L.

Lemma 2 (I, Sec. 4) holds without change, the proof being modified as follows: The contribution of the trajectories of the classes α and β are bounded respectively by

$$
\begin{equation*}
\epsilon(l, L)\left\{\int P_{x^{m}, v^{m}}\left(d \omega^{m}\right) \Delta\left(\omega^{m}\right)\right\} \leq \epsilon(l, L)\left\|f_{\beta}\right\|_{\infty}^{m} \tag{2.26}
\end{equation*}
$$

and

$$
\begin{align*}
& 2\|\rho\| m \int P_{x m-1, \nu m-1}\left(d \omega^{m-1}\right) \Delta\left(\omega^{m-1}\right) \\
& \quad \times \int_{K^{\prime}(r, \beta)} P_{z y}(d \omega) \Delta(\omega) \tag{2.27}\\
& \leq 2\|\rho\| m\left\|f_{\beta}\right\|_{\infty}^{m-1} \int_{K^{\prime}(r, \beta)} P_{x v}(d \omega) \Delta(\omega) . \tag{2.28}
\end{align*}
$$

We show in Appendix 2 that the last integral in (2.28) $\rightarrow 0$ as $r \rightarrow \infty$ uniformly with respect to (x, y). Lemma 2 follows immediately.

Theorem 1 holds with the following change in the proof. The contribution to (I.4.17) of the region $x^{m} \notin \Lambda_{L}^{m}$ is bounded by

$$
\begin{align*}
& {[2\|\rho\|] V^{m}\|\varphi\|^{2} \sup _{v, y, v^{m} \in A^{m} t_{t}}} \\
& \times \int_{x^{m} \Phi^{m} m_{L}} d x^{m} P_{x_{m}, y_{m}^{m}}\left(d \omega^{m}\right) \Delta\left(\omega^{m}\right) \\
& \times P_{x^{m}, v^{\prime m}}\left(d \omega^{\prime m}\right) \Delta\left(\omega^{\prime m}\right) \tag{2.29}\\
& \leq\left[2\|\rho\| V^{m / 2}\|\varphi\|\right]^{2}\left\|f_{\beta}\right\|_{\infty}^{m} m\left\|f_{\beta}\right\|_{1}^{m-1} \\
& \times \sup _{\nu \in \Delta_{L-r}} \int_{x \notin \Delta_{L}} d x P_{x y}(d \omega) \Delta(\omega) . \tag{2.30}
\end{align*}
$$

Now

$$
\begin{equation*}
\sup \cdots \leq \int_{|x| \geq r} f_{\beta}(x) d x \tag{2.31}
\end{equation*}
$$

f_{β} is integrable; therefore, the last quantity $\rightarrow 0$ as $r \rightarrow \infty$. The theorem follows immediately.

Theorem 2 holds with the following change in the proof of the convergence of $\left(z / V_{L}\right)(d / d z) \log$. \equiv $\ln Z_{L}$ to ρ_{0} : the bound (I.4.23) is replaced by

$$
\begin{align*}
& \left|\frac{1}{V_{L+l}} z \frac{d}{d z} \ln Z_{L+l}-\rho_{0}\right| \\
& \leq \epsilon_{1}(l, L)+\frac{2}{1-k}\left\|f_{\beta}\right\|_{\infty}\left[1-\frac{L^{\prime}}{(L+l)^{\nu}}\right] . \tag{2.32}
\end{align*}
$$

The theorem and the convergence of the virial expansion follow as in I.

3. BOUNDS ON THE RDM AND CP IN THE MB CASE

We follow II (Sec. 2). The unexplained notations are those of II (Sec. 1). First, for $\xi<\xi_{0}$:

$$
\begin{equation*}
\int\left|\tilde{\varphi}_{X}\left(\omega^{n}\right)\right| P_{y^{n}, v^{n}}\left(d \omega^{n}\right) d y^{n} \leq R_{m n} \Delta(X), \tag{3.1}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
R_{m n}=n!\xi^{-1} R^{-(m+n-1)}, \text { for } m>1 \tag{3.2}\\
R_{1 n}=n!\xi^{-1} e^{-2 \beta B} R^{-n}
\end{array}\right.
$$

The proof is the same as in II and in Ref. 5.
From (3.1), (3.2), (II.2.7), (II.2.9), we obtain the bound

$$
\begin{equation*}
|\rho(X)| \leq(|z| / \xi)(|z| / R)^{m-1}(1-|z| / R)^{-1} \Delta(X), \tag{3.3}
\end{equation*}
$$

which is better than (2.17) by a factor $(|z| / R)^{m-1}$. If the potential satisfies the stronger condition (e)

[^67]instead of (d), we can obtain different bounds on ρ from the Mayer-Montroll equations (II.1.30). From
\[

$$
\begin{align*}
& \int P_{y y}(d \omega) d y|K(X, \omega)| \Delta(\omega) \\
& \quad \leq \int P_{00}(d \omega) \Delta(\omega)\left[\sum_{i=1}^{m} v\left(\omega-\omega_{i}\right)+m A\right] \tag{3.4}
\end{align*}
$$
\]

we get as in II

$$
\begin{equation*}
\int\left|\tilde{\varphi}_{X}\left(\omega^{n}\right)\right| P_{\nu^{n}, \nu^{n}}\left(d \omega^{n}\right) d y^{n} \leq R_{m n} \exp \left[-U_{m}(X)\right] \Delta(X) \tag{3.5}
\end{equation*}
$$

and

$$
\begin{align*}
&|\rho(X)| \leq(|z| / \xi)(|z| / R)^{m-1}(1-|z| / R)^{-1} \\
& \times \exp \left[-U_{m}(X)\right] \Delta(X) \tag{3.6}
\end{align*}
$$

where $R_{m n}$ is defined by (3.2). The inequalities (3.4) and therefore (3.5) and (3.6) remain true if A is replaced by the better bound (2.11) [cf. Ref. 4, especially Eq. (7.11)]. For physical, i.e., real positive z and for potentials satisfying (e), we can obtain better bounds directly Ref. 6. From

$$
\begin{align*}
\exp \left[-U_{m+n}\left(\omega^{m+n}\right)\right] & \leq \exp \left[-U_{m}\left(\omega^{m}\right)\right] \\
& \times \exp [m \beta B] \exp \left[-U_{n}\left(\omega^{n}\right)\right] \tag{3.7}
\end{align*}
$$

and from the definitions, we get

$$
\begin{equation*}
\rho\left(\omega^{m}\right) \leq[z \exp (\beta B)]^{m} \exp \left[-U_{m}\left(\omega^{m}\right)\right] . \tag{3.8}
\end{equation*}
$$

We come back to potentials satisfying only (a) (b) (c) (d). The ρ defined by (II. $2.7,9$) and the in-finite-volume limit of ρ_{A} (Sec. 2) are identical; the proof is the same as in II.

We now prove the CP. Let

$$
\begin{align*}
h(x)= & \sup _{\omega}\left\{\int P_{0 x}(d \bar{\omega})[v(\omega-\bar{\omega})+A] \Delta(\bar{\omega})\right. \\
& \left.\times\left[\int P_{00}(d \bar{\omega})[v(\omega-\bar{\omega})+A] \Delta(\bar{\omega})\right]^{-1}\right\} . \tag{3.9}
\end{align*}
$$

Obviously $h(0)=1$. We prove in Appendix 2 that h is a bounded integrable function of x and that

$$
\begin{equation*}
h(x) \geq f_{\beta}(x) / f_{\beta}(0) \tag{3.10}
\end{equation*}
$$

Then

$$
\begin{equation*}
\int\left|\tilde{\varphi}_{X}\left(\omega^{n}\right)\right| P_{\nu^{n}, \nu^{n}+a^{n}}\left(d \omega^{n}\right) d y^{n} \leq R_{m n} \Delta(X) h\left(a^{n}\right) . \tag{3.11}
\end{equation*}
$$

The proof is the same as that of (3.1). From (3.11) and (II.2.22, 27) we get

[^68]\[

$$
\begin{align*}
& \int\left|\varphi\left(\omega^{m}\right)\right| P_{x^{m-1},(x+a) m-1}\left(d \omega^{m-1}\right) d x^{m-1} \\
& \leq \sum_{n=0}^{\infty} \frac{|z|^{n}}{n!} R_{1, m+n-1} \Delta(\omega) h\left(a^{m-1}\right) \tag{3.12}\\
& \leq(m-1)!\xi^{-1} e^{-2 \beta b} R^{-(m-1)} \\
& \times(1-|z| / R)^{-m} h\left(a^{m-1}\right) \Delta(\omega) . \tag{3.13}
\end{align*}
$$
\]

We integrate over the last trajectory and use (3.10) to obtain a slightly weaker but more symmetrical result. Finally,

$$
\begin{align*}
& \int\left|\bar{\chi}\left(x^{m}, x^{m}+a^{m}\right)\right| d x^{m-1} \\
& \quad \leq(m-1)!e^{-4 \beta B} f_{\beta}(0)[|z| /(R-|z|)]^{m} h\left(a^{m}\right) . \tag{3.14}
\end{align*}
$$

As in II, $\bar{\chi}$ is an integrable function of the distances between the pairs of points (x_{i}, y_{j}). The decrease as a function of the distances $\left|a_{i}\right|=\left|y_{i}-x_{i}\right|$ is slower and less explicitly known than in the previous case. The completely integrated form of the CP still holds,

$$
\begin{align*}
& \int\left|\bar{\chi}\left(x^{m}, y^{m}\right)\right| d x^{m} d y^{m-1} \\
& \leq(m-1)!e^{-4 \beta B} f_{\beta}(0)[|z| /(R-|z|)]^{m}| | h \mid \|_{1}^{m} . \tag{3.15}
\end{align*}
$$

4. LIMIT OF INFINITE VOLUME IN THE QUANTUM STATISTICS CASE

We follow I, Secs. 5, 6. The potential now satisfies conditions (a), (b), (c), (e). The notations are those of II, Sec. 3. The RDM are defined by

$$
\begin{align*}
& \rho_{\Lambda}\left(x^{m}, y^{m}\right) \\
& =\left(\sum_{\pi} \epsilon^{\pi}\right)_{m} \sum_{i^{m}} \epsilon^{\alpha+m} \int P_{x m, \pi(y m)}^{i m}\left(d \omega^{m}\right) \rho_{\Lambda}\left(\omega^{\gamma}\right), \tag{4.1}\\
& \rho_{\Lambda}\left(\omega^{\gamma}\right)=\frac{1}{Z_{\epsilon}} \sum_{r=0}^{\infty} z^{\alpha+r} \sum_{\delta(r)} \int d \omega^{\delta} \alpha_{\Lambda}\left(\omega^{\gamma+\delta}\right) \\
& \quad \times \exp \left[-U\left(\omega^{\gamma+\delta}\right)\right], \tag{4.2}
\end{align*}
$$

$Z_{\epsilon}=\sum_{r=0}^{\infty} z^{r} \sum_{\delta(r)} \int d \omega^{\delta} \alpha_{\Delta}\left(\omega^{\delta}\right) \exp \left[-U\left(\omega^{\delta}\right)\right]$.
The bounds given in I, Sec. 5 hold without change. The Kirkwood-Salzburg equations are now (I.6.8), (II.3.38 et seq.):

$$
\begin{align*}
& \rho_{\Lambda}\left(\omega^{\gamma}\right)=\alpha_{\Delta}\left(\omega^{\gamma}\right) z^{i_{1}} \exp \left[-F_{1}\left(\omega^{\gamma}\right)\right] \\
& \times\left\{\sum_{r=0}^{\infty} \sum_{\delta(r)} \int d_{\epsilon} \omega^{\delta} K\left(\omega_{1}, j_{1} ; \omega^{\delta}\right) \rho_{\Lambda}\left(\omega^{\gamma^{\prime}+\delta}\right)\right\} \\
& \text { for } m>1, \tag{4.4}
\end{align*}
$$

$$
\begin{align*}
& \rho_{\Lambda}\left(\omega_{1}, j_{1}\right)=\alpha_{\Lambda}\left(\omega_{1}\right) z^{i_{2}} \exp \left[-F_{1}\left(\omega_{1}, j_{1}\right)\right] \\
& \times\left\{1+\sum_{r=1}^{\infty} \sum_{\delta(r)} \int d_{\epsilon} \omega^{\delta} K\left(\omega_{1}, j_{1}, \omega^{\delta}\right) \rho_{\Lambda}\left(\omega^{\delta}\right)\right\} \\
& \text { for } m=1 . \tag{4.5}
\end{align*}
$$

We now symmetrize these equations as was done previously in the MB case (I, Sec. 3). This was unnecessary for purely repulsive potentials. (1.4) implies

$$
\begin{equation*}
\sum_{i=1}^{m} F_{i}\left(\omega^{\gamma}\right) \geq-2 q \beta B \tag{4.6}
\end{equation*}
$$

where F_{i} is defined in analogy with F_{1} (II.3.39). Let W_{i}^{γ} be the set of the (continuous) ω^{γ} such that $F_{i}\left(\omega^{\gamma}\right) \geq-2 j_{i} \beta B, \eta_{i}$ the characteristic function of W_{i}^{γ} and $\theta_{i}=\eta_{i} / \sum_{i=1}^{m} \eta_{i}$. It follows from (4.6) that $\sum_{i=1}^{m} \theta_{i}=1$. We define Π_{k} and Π in analogy with (I.3.10). Applying II to both sides of (4.4) gives (I.6.10) with A_{Δ} and ζ defined by (I.6.11, 12) and where K is now defined by:

$$
\begin{align*}
& K \varphi\left(\omega^{\gamma}\right)=\sum_{i=1}^{m} z^{i} \Pi \Pi_{i}\left\{\theta_{1}\left(\omega^{\gamma}\right) \exp \left[-F_{1}\left(\omega^{\gamma}\right)\right]\right. \\
& \left.\times\left[\sum_{r=0}^{\infty} \sum_{\delta(r)} \int d_{\epsilon} \omega^{\delta} K\left(\omega_{1}, j_{1} ; \omega^{\delta}\right) \varphi\left(\omega^{\gamma^{\prime}+\delta}\right)\right]\right\} \\
& \text { for } m>1 \tag{4.7}
\end{align*}
$$

$$
\begin{align*}
K \varphi\left(\omega_{1}, j_{1}\right) & =z^{i_{1}} \exp \left[-F_{1}\left(\omega_{1}, j_{1}\right)\right] \\
& \times \sum_{r=1}^{\infty} \sum_{\delta(r)} \int d_{\epsilon} \omega^{\delta} K\left(\omega_{1}, j_{1} ; \omega^{\delta}\right) \varphi\left(\omega^{\delta}\right) . \tag{4.8}
\end{align*}
$$

K is not a bounded operator from E_{ξ} to E_{ξ} (I.5.13). Let G be the complex vector space of sequences of functionals of m trajectories ω^{m} of respective lengths $j^{m} \beta: \varphi=\left(\varphi\left(\omega^{m}, j^{m}\right), m=0,1, \cdots ; j_{i}=1, \cdots\right)$ such that for all $\left(m, j^{m}\right): \varphi\left(\omega^{m}, j^{m}\right)$ is integrable in the sense of $\int P_{x m, \nu^{m}}^{i^{m}}\left(d \omega^{m}\right)$ [and $\int P_{x^{m}, x^{m}}^{i m}\left(d \omega^{m}\right)$] for almost every $\left(x^{m}, y^{m}\right)$ (and x^{m}), and the integral is a Lebesgue measurable function of $\left(x^{m}, y^{m}\right)$ (and x^{m}). Let $\Delta(\omega, j)$ be a sequence of real strictly positive translation invariant functionals of one trajectory of length $j \beta, j=1, \cdots$, integrable in the same sense, and let

$$
\begin{equation*}
\Delta\left(\omega^{m}, j^{m}\right)=\prod_{i=1}^{m} \Delta\left(\omega_{i}, j_{i}\right) \tag{4.9}
\end{equation*}
$$

Let $G_{\Delta} \subset G$ be the subspace of those $\varphi \in G$ for which

$$
\begin{equation*}
\|\varphi\|=\sup _{i m} \operatorname{ess} . \sup \cdot \frac{\left|\varphi\left(\omega^{m}, j^{m}\right)\right|}{\Delta\left(\omega^{m}, j^{m}\right)}<+\infty . \tag{4.10}
\end{equation*}
$$

G_{Δ} is a Banach space with $\|\varphi\|$ as the norm of φ. Let $\varphi \in G_{\Delta}$. Then

$$
\begin{align*}
& \left|K \varphi\left(\omega^{\gamma}\right)\right| \leq \sup _{i i}\left[|z| e^{2 \beta B}\right]^{i i}\|\varphi\| \Delta\left(\omega_{i}^{\gamma^{\prime}}\right) \\
& \times \exp \left\{\sum_{i}^{\infty} \frac{1}{j} \int P_{\nu y}^{j}(d \omega) d y\left|K\left(\omega_{i}, j_{i} ; \omega, j\right)\right| \Delta(\omega, j)\right\}, \tag{4.11}
\end{align*}
$$

where $\omega_{i}^{\gamma^{\prime}}$ is obtained from ω^{γ} by removing (ω_{i}, j_{i}) and provided the series in the last factor converges. If this is the case and if, furthermore, for some $\xi>0$

$$
\begin{array}{r}
\xi^{i \bullet} \exp \left\{\sum_{1}^{\infty} \frac{1}{j} \int P_{v \nu}^{i}(d \omega) d y\left|K\left(\omega_{0}, j_{0} ; \omega, j\right)\right| \Delta(\omega, j)\right\} \\
\leq \Delta\left(\omega_{0}, j_{0}\right) \tag{4.12}
\end{array}
$$

for all $\left(\omega_{0}, j_{0}\right)$, then

$$
\begin{equation*}
\left|K \varphi\left(\omega^{\gamma}\right)\right| \leq \sup _{i ;}\left(|z| e^{2 \beta B} / \xi\right)^{i i}\|\varphi\| \Delta\left(\omega^{\gamma}\right) . \tag{4.13}
\end{equation*}
$$

Therefore, K is a bounded operator from G_{Δ} to G_{Δ} provided $|z| e^{2 \beta B} / \xi \leq 1$ and its norm satisfies

$$
\begin{equation*}
\|K\|=k \leq|z| e^{2 \beta B} / \xi \tag{4.14}
\end{equation*}
$$

We come back to (4.12). The method of Sec. 2 gives the sufficient condition:

$$
\begin{align*}
& \xi^{i \circ} \exp \left\{\sum_{1}^{\infty} \int P_{00}^{i}(d \omega) \Delta(\omega, j)\right. \\
& \left.\times\left[\frac{1}{j} v\left(\omega, \omega_{0}\right)+j_{0} e^{i \beta B} A\right]\right\} \leq \Delta\left(\omega_{0}, j_{0}\right) \tag{4.15}
\end{align*}
$$

where now
(1) $v\left(\omega, \omega_{0}\right)$ is the volume of the union $V\left(\omega, \omega_{0}\right)$ of the family of spheres of radius a with centers at the points $\omega(t+l \beta)-\omega_{0}\left(t+l_{0} \beta\right)$, with t real, $0 \leq t \leq \beta, l$ and l_{0} integers, $0 \leq l \leq j-1,0 \leq$ $l_{0} \leq j_{0}-1$.
(2) $A=\beta \int|\phi| d x$.
(3) The factor $\exp (j \beta B)$ comes from the use of condition (e), which is essential here.

Let

$$
\begin{equation*}
\Delta(\omega, j)=\xi^{i} \exp [\varphi(\omega, j)] \tag{4.16}
\end{equation*}
$$

(4.15) becomes

$$
\begin{align*}
\varphi\left(\omega_{0}, j_{0}\right) \geq \sum_{1}^{\infty} \xi^{i} & \int P_{o 0}^{i}(d \omega) \exp [\varphi(\omega, j)] \\
& \times\left[\frac{1}{j} v\left(\omega, \omega_{0}\right)+j_{0} e^{i \beta s} A\right] \tag{4.17}
\end{align*}
$$

which implies in particular $\varphi(\omega, j) \geq 0$, and therefore, $\Delta(\omega, j) \geq \xi^{i}$. We show in Appendix 3 that (4.17) has all the properties stated for (2.14) (Sec. 2). For any $\xi \in] 0, \xi_{0}\left[\right.$, let $\varphi_{\xi}(\omega, j)$ be the smallest positive solution, and G_{ξ} the corresponding G_{Δ} defined by
(4.10) and (4.16) with $\varphi=\varphi_{\xi}$. It then follows from (4.14) that for any z such that

$$
\begin{equation*}
|z|<R=\xi \exp (-2 \beta B) \tag{4.18}
\end{equation*}
$$

Eq. (I.6.10) has a unique solution in G_{ξ} which is analytic in z for $|z|<R$. Moreover, from $\|\zeta\| \leq$ $|z| / \xi$, we obtain

$$
\begin{equation*}
\left\|\rho_{\Lambda}\right\| \leq(1-k)^{-1}|z| / \xi \tag{4.19}
\end{equation*}
$$

ρ_{A} defined by (I.6.10) and by (4.2) coincide for $|z|<R$ as previously. From (4.1), (4.10), and (4.19), we obtain

$$
\begin{equation*}
\left|\rho_{\Lambda}\left(x^{m}, y^{m}\right)\right| \leq m!(1-k)^{-1}(|z| / \xi)\left\|g_{\xi}\right\|_{\infty}^{m} \tag{4.20}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{\xi}(x)=\sum_{1}^{\infty} \xi^{i} \int P_{o x}^{i}(d \omega) \exp \left[\varphi_{\xi}(\omega, j)\right] \tag{4.21}
\end{equation*}
$$

g_{ξ} is shown in Appendix 3 to be a bounded integrable function of x for $\xi<\xi_{1}$, where ξ_{1} is some real number in $10, \xi_{0}$]. There is strong evidence, but we have been unable to prove, that one can take $\xi_{1}=\xi_{0}$. From now on, we take $\xi<\xi_{1}$. $\rho_{\Lambda}\left(x^{m}, y^{m}\right)$ is then a bounded operator in $L^{2}\left(R^{v m}\right)$, with norm:
$\left\|\rho_{\Lambda}\left(x^{m}, y^{m}\right)\right\|_{2} \leq m!(1-k)^{-1}(|z| / \xi)\left\|g_{\xi}\right\|_{1}^{m}$.
We now consider the limit $V \rightarrow \infty$ and show that the results of I, Sec. 7 remain true in the present case. We consider first $\left\|A_{L} K A_{L+l^{\prime}}-A_{L} K A_{L+l}\right\|$, where $0<2 a<l<l^{\prime}$. Let $\varphi \in G_{\xi}$. Then

$$
\left|\left(A_{L} K A_{L+l^{\prime}}-A_{L} K A_{L+i}\right) \varphi\left(\omega^{\gamma}\right)\right|
$$

$\leq \sup _{i i}\left(|z| e^{2 \beta B}\right)^{i i}\|\varphi\| \Delta\left(\omega_{i}^{\gamma^{\prime}}\right) \alpha_{L}\left(\omega_{i}\right)$
$\times \exp \left\{\sum_{1}^{\infty} \frac{1}{j} \int P_{y \nu}^{i}(d \omega) d y\left|K\left(\omega_{i}, j_{i} ; \omega, j\right)\right| \Delta(\omega, j)\right\}$
$\times\left\{\sum_{1}^{\infty} \frac{1}{j} \int P_{v y}^{i}(d \omega) d y\left|K\left(\omega_{i}, j_{i} ; \omega, j\right)\right| \Delta(\omega, j)\right.$
$\left.\times\left[\alpha_{L+l^{\prime}}(\omega)-\alpha_{L+l}(\omega)\right]\right\}$
$\leq \sup _{j i}\left(|z| e^{2 \beta B} / \xi\right)^{i i}\|\varphi\| \Delta\left(\omega^{\gamma}\right) \times\{$ same last factor $\}$.

Therefore,

$$
\begin{equation*}
\left\|A_{L} K A_{L+l^{\prime}}-A_{L} K A_{L+i}\right\| \leq \eta(l, L) \tag{4.25}
\end{equation*}
$$

where
$\eta(l, L)=\sup _{\left(\omega_{0}, i_{0}\right)}\left\{\left(\frac{|z|}{R}\right)^{i \bullet} \sum_{1}^{\infty} \frac{1}{j} \int P_{y y}^{i}(d \omega) d y \alpha_{L}\left(\omega_{0}\right)\right.$
$\left.\times\left[1-\alpha_{L+l}(\omega)\right]\left|K\left(\omega_{0}, j_{0} ; \omega, j\right)\right| \Delta(\omega, j)\right\}$.

We split the ω integration as previously:
(1) The contribution of the ω which stay outside $\Lambda_{L+l / 2}$ is bounded by

$$
\begin{align*}
& {[R /(e(R-|z|))] \beta \int_{|x|>l / 2}|\phi| d x} \\
& \quad \times\left\{\sum_{1}^{\infty} e^{i \beta B} \int P_{00}^{i}(d \omega) \Delta(\omega, j)\right\} \tag{4.27}
\end{align*}
$$

where the first factor comes from the relation $\sup _{n} n x^{n} \leq[e(1-x)]^{-1}$ for $x<1$. (4.27) does not depend on L and $\rightarrow 0$ as $l \rightarrow \infty$.
(2) The contribution of the ω which have points inside $\Lambda_{L+l / 2}$ is bounded by

$$
\begin{align*}
& {[R / e(R-|z|)] A \sum_{i=1}^{\infty} e^{i \beta B} \int_{R^{\prime}(l / 2, i \beta)} P_{00}^{i}(d \omega) \Delta(\omega, j)} \\
& +\sup _{\omega_{0}}\left\{\sum_{i=1}^{\infty} \frac{1}{j} \int_{K^{\prime}(l-a, i \beta)} P_{00}^{i}(d \omega) \alpha_{L}\left(\omega_{0}\right) v\left(\omega_{0}, \omega\right) \Delta(\omega, j)\right\} . \tag{4.28}
\end{align*}
$$

The first term in (4.28) depends only on l and $\rightarrow 0$ as $l \rightarrow \infty$ (Appendix 3). The last term depends on L through $\alpha_{L}\left(\omega_{0}\right) v\left(\omega, \omega_{0}\right)$ and increases with L. We show in (Appendix 3) that it $\rightarrow 0$ as $l \rightarrow \infty$ for $L=L_{0}+p l, L_{0}$ and p being positive constants.

Lemma 1 (I, Sec. 7) follows immediately. As in Sec. 2, the limit as $l \rightarrow \infty$ is not uniform in L.

Lemma 2 holds without change, the proof being modified as follows: the contributions to (I.7.4) of the trajectories of classes α and β are bounded respectively by

$$
\begin{equation*}
m!\epsilon(l, L)\left\|g_{\xi}\right\|_{\infty}^{m} \tag{4.29}
\end{equation*}
$$

and

$$
m!2\|\rho\| m\left\|g_{\xi}\right\|_{\infty}^{m-1}
$$

$$
\begin{equation*}
\times \sup _{x, y \in D}\left\{\sum_{i=1}^{\infty} \int_{K^{\prime}(r, i \beta)} P_{z y}^{i}(d \omega) \Delta(\omega, j)\right\} \tag{4.30}
\end{equation*}
$$

The last factor $\rightarrow 0$ as $r \rightarrow \infty$ uniformly with respect to (x, y) (Appendix 3), whence, Lemma 2.

Theorem 1 holds with the following change in the proof. The contributions of the region $x^{m} \notin \Lambda_{L}^{m}$ to $\|\Delta \rho \varphi\|^{2}$ is bounded by
$\left(2\|\rho\| V^{m / 2}\|\varphi\| m!\right)^{2}\left\|g_{\xi}\right\|_{\infty}^{m} m\left\|g_{\xi}\right\|_{1}^{m-1}$

$$
\begin{equation*}
\times\left\{\sum_{i=1}^{\infty} \int_{|x-y|>r} P_{x \nu}^{i}(d \omega) d x \Delta(\omega, j)\right\} \tag{4.31}
\end{equation*}
$$

The last factor is $\int_{|x|>r} g_{\xi}(x) d x$, and $\rightarrow 0$ as $r \rightarrow \infty$, because g_{ξ} is integrable, whence, the theorem.

Theorem 2 and the convergence of the virial ex-
pansion hold with the following change in the proof: the bound (I.7.9) is replaced by

$$
\begin{align*}
\left\lvert\, \frac{1}{V_{L+l}} z\right. & \left.\frac{d}{d z} \ln Z_{L+l}-\rho_{0} \right\rvert\, \leq \epsilon_{1}(l, L) \\
& +\frac{2}{1-k}\left\|g_{\xi}\right\|_{\infty}\left(1-\frac{L^{\prime}}{(L+l)^{\prime}}\right) \tag{4.32}
\end{align*}
$$

5. BOUNDS ON THE RDM AND CP IN THE QS CASE

We follow II, Sec. 4. The potential satisfies (a), (b), (c), (e). The notations are those of II. We first look for bounds of the type:

$$
\begin{equation*}
\int\left|\tilde{\varphi}_{X}\left(\omega^{\delta}\right)\right| d_{+} \omega^{\delta} \leq P(\gamma, \delta) \Delta\left(\omega^{\delta}\right) \tag{5.1}
\end{equation*}
$$

We proceed by induction on $q+r$. From the KS equations (II.3.38), we get the sufficient condition:

$$
\begin{align*}
& P(\gamma, \delta) \geq \sup _{k\left(\gamma_{k} \geq 1\right)} e^{2 k \beta B} \sum_{\delta^{\prime} \leq \delta} P\left(\gamma^{\prime}+\delta^{\prime}, \delta-\delta^{\prime}\right) \\
& \quad \times \sup _{\omega} \frac{1}{\Delta(\omega, k)} \int d_{+} \omega^{\delta^{\prime}}\left|K\left(\omega, k ; \omega^{\delta^{\prime}}\right)\right| \Delta\left(\omega^{\delta^{\prime}}\right), \tag{5.2}
\end{align*}
$$

where $\omega^{\gamma^{\prime}}$ is obtained from ω^{γ} by removing (ω, k). We next look for bounds of the type (II.4.6), for which (5.2) gives the sufficient condition

$$
\begin{align*}
& P(q, r) \geq \sup _{1 \leq k \leq q} e^{2 k \beta B} \sum_{r^{\prime}=0}^{r} P\left(q-k+r^{\prime}, r-r^{\prime}\right) \\
& \times \sup _{\omega} \frac{1}{\Delta(\omega, k)} \sum_{\delta^{\prime}\left(r^{\prime}\right)} \int d_{+} \omega^{\delta^{\prime}}\left|K\left(\omega, k ; \omega^{\delta^{\prime}}\right)\right| \Delta\left(\omega^{\delta^{\prime}}\right) . \tag{5.3}
\end{align*}
$$

From $(4.15,18)$ we obtain the solution

$$
\begin{equation*}
P(q, r)=\xi^{-1} R^{-(q+r-1)} \tag{5.4}
\end{equation*}
$$

where we have used the starting point $q+r=1$, $P(1,0) \leq[\inf \Delta(\omega, 1)]^{-1} \leq \xi^{-1}$. Therefore,

$$
\begin{equation*}
\sum_{\delta(r)} \int\left|\tilde{\varphi}_{X}\left(\omega^{\delta}\right)\right| d_{+} \omega^{\delta} \leq R^{-(\alpha+r-1)} \Delta(X) / \xi \tag{5.5}
\end{equation*}
$$

from which we get, as in II,

$$
\begin{equation*}
|\rho(X)| \leq(|z| / \xi)(|z| / R)^{a-1}(1-|z| / R)^{-1} \Delta(X) \tag{5.6}
\end{equation*}
$$

which is better than (4.19) by a factor $(|z| / R)^{a-1}$. We can obtain different bounds for ρ from the Mayer-Montroll equations (II.3.41). From

$$
\begin{align*}
& \frac{1}{j} \int P_{v y}^{i}(d \omega) d y \Delta(\omega, j)|K(X ; \omega, j)| \\
& \leq \int P_{00}^{j}(d \omega) \Delta(\omega, j)\left\{\sum_{k=1}^{m}\left[\frac{1}{j} v\left(\omega_{k}, \omega\right)+j_{k} e^{i \beta B} A\right]\right\} \tag{5.7}
\end{align*}
$$

we obtain as previously

$$
\begin{equation*}
\sum_{\delta(r)} \int\left|\tilde{\varphi}_{X}\left(\omega^{\delta}\right)\right| d_{+\omega^{\delta}} \leq R^{-(\alpha+r-1)} \exp [-U(X)] \Delta(X) / \xi \tag{5.8}
\end{equation*}
$$

and

$$
\begin{align*}
&|\rho(X)| \leq(|z| / \xi)(|z| / R)^{a-1}(1-|z| / R)^{-1} \\
& \times \exp [-U(X)] \Delta(X) . \tag{5.9}
\end{align*}
$$

For physical, i.e., real positive z, in the case of Bose-Einstein statistics only, we can obtain better bounds directly. ${ }^{6}$ From

$$
\begin{align*}
& \exp \left[-U\left(\omega^{\gamma+\delta}\right)\right] \\
& \quad \leq \exp \left[-U\left(\omega^{\gamma}\right)\right] \exp (q \beta B) \exp \left[-U\left(\omega^{\delta}\right)\right] \tag{5.10}
\end{align*}
$$

and from the definitions, we obtain

$$
\begin{equation*}
\rho(X) \leq(z \exp \beta B)^{\alpha} \exp [-U(X)] . \tag{5.11}
\end{equation*}
$$

We now prove the cluster property, namely, the absolute integrability of $\bar{\chi}\left(x^{m}, y^{m}\right)$ (II.4.20) as a function of the differences of its arguments, by obtaining a finite upper bound for the integral J_{m} (II.4.24).

Let $\Delta^{\prime}(\omega, j)$ be a sequence of real strictly positive translation invariant Wiener integrable (in the same sense as previously) functionals of one trajectory of length $j \beta,(j=1, \cdots)$. Let

$$
\begin{equation*}
\Delta^{\prime}\left(\omega^{m}, j^{m}\right)=\prod_{i=1}^{m} \Delta^{\prime}\left(\omega_{i}, j_{i}\right) \tag{5.12}
\end{equation*}
$$

For any trajectory ω of length $k \beta$, let

$$
\begin{align*}
u_{i} & =u_{i}(\omega, k) \\
& =\int P_{00}^{i}(d \bar{\omega})\left[\frac{1}{j} v(\omega, \bar{\omega})+k A e^{i \beta B}\right] \Delta^{\prime}(\bar{\omega}, j) \tag{5.13}\\
v_{i} & =\imath_{i}(\omega, k) \\
& =\int P_{0 x}^{i}(d \bar{\omega}) d x\left[v(\omega, \bar{\omega})+j k A e^{i \beta B}\right] \Delta^{\prime}(\bar{\omega}, j) . \tag{5.14}
\end{align*}
$$

Let μ be a real positive constant and consider the equation

$$
\begin{equation*}
\xi^{\prime k} \exp \left\{\sum_{1}^{\infty}\left(u_{i}(\omega, k)+\mu v_{i}(\omega, k)\right)\right\} \leq \Delta^{\prime}(\omega, k) \tag{5.15}
\end{equation*}
$$

where $0<\xi^{\prime}<1$.
For $\mu=0$, (5.15) reduces to (4.15) and has the solution (ξ, Δ) used previously, for $0<\xi<\xi_{0}$. We show in Appendix 3 that for μ positive and small enough, (5.15) has solutions of the same type as (4.15) for $0 \leq \xi^{\prime}<\xi_{0}^{\prime} \leq \xi_{0}$. Let ($\xi^{\prime}, \Delta^{\prime}$) be such a solution and let $R^{\prime}=\xi^{\prime} \exp (-2 \beta B)$. The other notations being the same as in (II. Sec. 4), we now prove the following:

Lemma:

$$
\begin{align*}
\sum_{Q+r=p} \sum_{\gamma(m, \alpha)} \sum_{\delta(r)} & \int d \omega^{\gamma} d+\omega^{\delta}\left|\tilde{\varphi}_{T}(X, Y)\right| \\
& \leq \mu^{-m} R^{\prime-(p+s-1)} \xi^{\prime-1} \Delta^{\prime}(T) \tag{5.16}
\end{align*}
$$

Proof: We proceed by induction on $p+s$. We first look for bounds of the type

$$
\begin{equation*}
\int d \omega^{\gamma} d_{+} \omega^{8}\left|\tilde{\varphi}_{T}(X, Y)\right| \leq P(\theta, \gamma, \delta) \Delta^{\prime}(T) \tag{5.17}
\end{equation*}
$$

From (5.17) and (II.4.29) we get the sufficient condition

$$
\begin{align*}
& P(\theta, \gamma, \delta) \geq \sup _{k\left(\theta_{k} \geq 1\right)} \exp (2 k \beta B) \\
& \times \sum_{\gamma^{\prime} \leq \gamma} \sum_{\delta^{\prime} \leq \delta} P\left(\theta^{\prime}+\gamma^{\prime}+\delta^{\prime}, \gamma-\gamma^{\prime}, \delta-\delta^{\prime}\right) \\
& \times \sup _{\omega}\left\{\frac{1}{\Delta^{\prime}(\omega, k)} \times \prod_{i} \frac{1}{\gamma_{i}^{\prime}!}\left(u_{i}\right)^{\gamma^{\prime} ;} \frac{1}{\delta_{i}^{\prime}!}\left(v_{i}\right)^{\delta^{\prime} i}\right\} . \tag{5.18}
\end{align*}
$$

We next look for bounds of the type (II.4.33), for which we obtain the sufficient condition:

$$
\begin{align*}
P(s, q, m, r) \geq & \sup _{1 \leq k \leq s} \exp (2 k \beta B) \sum_{r^{\prime}=0}^{*} \sum_{m^{\prime}=0}^{m} \sum_{a^{\prime}=m^{\prime}}^{e} P\left(s-k+q^{\prime}+r^{\prime}, q-q^{\prime}, m-m^{\prime}, r-r^{\prime}\right) \\
& \times \sup _{a} \frac{1}{\Delta^{\prime}(\omega, k)} \times \text { coef of } z^{r^{\prime}} \text { in } \exp \left(\sum_{1}^{\infty} z^{i} u_{i}\right) \times \operatorname{coef} \text { of } z^{q^{\prime}} \text { in }\left(\sum_{i}^{\infty} z^{i} v_{i}\right)^{m^{\prime}} / m^{\prime}! \tag{5.19}
\end{align*}
$$

The last step is to look for bounds of the type

$$
\begin{equation*}
\sum_{a \geq m, r \geq 0, Q+r-p} P(s, q, m, r) \leq \mu^{-m} P(s, p) \tag{5.20}
\end{equation*}
$$

for which (5.19) gives the sufficient condition

$$
\begin{align*}
& P(s, p) \geq \sup _{1 \leq k \leq s} \exp (2 k \beta B) \\
& \quad \times \sum_{p^{\prime}=0}^{p} P\left(s-k+p^{\prime}, p-p^{\prime}\right) \sup _{\omega} \frac{1}{\Delta^{\prime}(\omega, k)} \\
& \quad \times \operatorname{coef} \text { of } z^{p^{\prime}} \operatorname{in} \exp \left[\sum_{1}^{\infty} z^{i}\left(u_{i}+\mu v_{j}\right)\right] . \tag{5.21}
\end{align*}
$$

From (5.15) and using the starting point of the induction procedure $s=1, q=r=0, P(1,0) \leq \xi^{-1}$, we obtain the solution

$$
\begin{equation*}
P(s, p)=R^{\prime-(p+\pi-1)} \xi^{\prime-1} \tag{5.22}
\end{equation*}
$$

The lemma follows immediately.
In the preceding proof, for the sake of simplicity, we have overlooked the following fact: the transition from (5.18) to (5.19) and from (5.19) to (5.21) involves an interchange of $\sup _{\omega}$ with a summation. Therefore, conditions (5.19) and (5.21) are not sufficient for (5.18) and (5.19), respectively, to hold and the exact solutions of (5.18) and (5.19) may not satisfy (II.4.33) and (5.20). However, (5.21) is a sufficient condition for the lemma to hold, the purpose of the intermediary bounds being only to reach it in several steps. The same remark applies to the proof of (5.5).

We finally prove the CP. We substitute (5.16) in (II.4.38) and obtain for $|z|<R^{\prime}$

$$
\begin{align*}
J_{m} \leq & m!(m-1)!\mu^{-(m-1)} \\
& \times \sum_{k=1}^{\infty}\left\{\int P_{0 x}^{k}(d \omega) d x \Delta^{\prime}(\omega, k)\right\} \xi^{\prime-1} \\
& \times \sum_{p=m-1}^{\infty}|z|^{p+k} / R^{p+k-1}, \tag{5.23}\\
J_{m} \leq & m!(m-1)!\mu^{-(m-1)} \\
& \times R^{\prime}\left(|z| / R^{\prime}\right)^{m-1}\left(1-|z| / R^{\prime}\right)^{-1} \xi^{\prime-1} \\
& \times \sum_{k=1}^{\infty}\left(|z| / R^{\prime}\right)^{k} \int P_{0 x}^{k}(d \omega) \Delta^{\prime}(\omega, k) d x \tag{5.24}
\end{align*}
$$

The last series is uniformly convergent for $|z| \leq R^{\prime}$ and bounded by $\left\|g_{\xi}^{!},\right\|_{1}$, where

$$
\begin{equation*}
g_{\xi^{\prime}}^{\prime}(x)=\sum_{i=1}^{\infty} \int P_{0 x}^{i}(d \omega) \Delta^{\prime}(\omega, j) \tag{5.25}
\end{equation*}
$$

provided the last series converges in L^{1}. Now we show in Appendix 3 that for any $\xi<\xi_{0}$ such that g_{ξ} be integrable (a sufficient condition for which is $\xi<\xi_{1}$), for any $\xi^{\prime}<\xi$, one can take μ sufficiently small for (5.15) to have a solution and for (5.25) to be convergent in L^{1}. It then follows from (5.24) that the CP holds in the whole region $|z|<R_{0}=$ $\xi_{0} \exp (-2 \beta B),|z|<R_{1}=\xi_{1} \exp (-2 \beta B)$, where we have proved the convergence of the z expansion of the RDM and the convergence in L^{1} of the g_{ξ} series (4.21) for $\xi=|z| e^{2 \beta B}$. The second condition is very likely to be redundant.

6. CONCLUSIONS

The results of I and II, namely, (1) the existence of the limit $V \rightarrow \infty$ in the sense of I, Sec. 4, Lemma

1, 2 and Theorem 1; (2) the analyticity of the RDM in z in a neighborhood of the origin, and therefore, the convergence of the virial expansion in a neighborhood of the origin; (3) the cluster property, remain true for the class of hard-core potentials defined in Sec. 1.

Minor improvements could easily be obtained for the various bounds which appear in the preceding sections; they do not change our main results and are of little practical interest, in view of the fact that most of these bounds contain unknown functions like f, Δ, or g_{ξ}.

On the other hand, it is clear from the proofs that the same results hold for more general potentials:

In the MB case, condition (e) is never used, except to obtain the bounds (3.6) and (3.8). Keeping (a), (d), and (b) for simplicity, we can replace (c) by the weaker condition:
(c^{\prime}) ϕ_{-}is integrable in the whole space, and ϕ_{+}is integrable outside a bounded region.

$$
\begin{equation*}
\int_{|x| \geq b>a} \phi_{+}(x) d x<+\infty . \tag{6.1}
\end{equation*}
$$

The contribution of $\phi_{+}(x)$ for $|x| \leq b$ to the various kernels is bounded by that of a hard core of radius b, and all the proofs remain valid with b replacing a. This allows in particular an arbitrary growth of ϕ near the core, as well as potentials without hard core ($a=0$) and with arbitrary growth at the origin, for instance Lennard-Jones potentials $\phi(x) \simeq|x|^{-12}$.

In the QS case: (c) can also be replaced by (\mathbf{c}^{\prime}), thus allowing an arbitrary growth of ϕ near the core. However, condition (e), and therefore, the existence of a hard core of finite radius is essential to our treatment of non purely repulsive potentials [see Eq. (4.15)] and there is little hope to get rid of it with the present method.

ACKNOWLEDGMENTS

I am grateful to Dr. David Ruelle for his constant interest in this work and for helpful discussions and comments. I wish to thank Professor R. G. Sachs for the hospitality extended to me at the University of Wisconsin, where part of this work was done.

APPENDIX 1

Integrability of $\exp \left[-U_{m}\left(\omega^{m}\right)\right]$

We first prove that under conditions (a), (b), (d)

$$
\begin{equation*}
f\left(\omega^{m}\right)=\exp \left[-U_{m}\left(\omega^{m}\right)\right] \tag{A1.1}
\end{equation*}
$$

where $U_{m}\left(\omega^{m}\right)$ is defined by (I.2.1), is an integrable function of ω^{m} for almost every x^{m}, y^{m}. The measures referred to in this section are $P_{z^{m, 2 m}}$ in ω space and Lebesgue measure in x space. Let
$F_{m}=\left\{x^{m}:\left(x_{i}-x_{i}\right) \in F\right.$ for at least one pair $\left.(i, j)\right\}$,
$C_{m}\left(\operatorname{resp} \bar{C}_{m}\right)=\left\{x^{m}:\left|x_{i}-x_{i}\right|<a(\operatorname{resp} \leq a)\right.$ for at least one pair $(i, j)\}$. Now,
(1) If x^{m} or $y^{m} \in C_{m}$, then $f\left(\omega^{m}\right)=0$ almost everywhere and

$$
\int P_{x^{m}, \nu^{m}}\left(d \omega^{m}\right) f\left(\omega^{m}\right)=0 .
$$

(2) The set $\left\{\left(x^{m}, y^{m}\right): x^{m}\right.$ or $y^{m} \in \bar{C}_{m}-C_{m}$ or $\left.\in F_{m}\right\}$ has measure zero.
(3) Consider now $x^{m} \notin F_{m}, x^{m} \notin \bar{C}_{m}, y^{m} \notin F_{m}$, $y^{m} \notin \bar{C}_{m}$ and define the following sequence of functionals $f_{n}\left(\omega^{m}\right)$:
(i) If ω^{m} intersects $C_{m}, f_{n}\left(\omega^{m}\right)=f\left(\omega^{m}\right)=0$.
(ii) If ω^{m} does not intersect \bar{C}_{m} and does not intersect F_{m},

$$
\begin{equation*}
f_{n}\left(\omega^{m}\right)=\exp \left\{-\frac{\beta}{n} \sum_{p=1}^{n} \sum_{i<i} \phi\left[\omega_{i}\left(\frac{p \beta}{n}\right)-\omega_{i}\left(\frac{p \beta}{n}\right)\right]\right\} . \tag{A1.2}
\end{equation*}
$$

The ω^{m} that intersect F_{m} form a set of measure 0 (I, Appendix 1). The ω^{m} that intersect \bar{C}_{m} but not C_{m} form also a set of measure 0 . We omit the details of the proof. Therefore, $f_{n}\left(\omega^{m}\right) \rightarrow f\left(\omega^{m}\right)$ everywhere and is bounded by $\exp (2 m \beta B)$. It then follows from Lebesgue-bounded convergence theorem [Ref. 7] that $f\left(\omega^{m}\right)$ is integrable.

```
Continuity of \(\bar{f}\left(x^{m}, y^{m}\right)=\int P_{x^{m}, y^{m}}\left(d \omega^{m}\right) \alpha_{\Delta}\left(\omega^{m}\right) f\left(\omega^{m}\right)\)
```

We prove next that $\bar{f}\left(x^{m}, y^{m}\right)$ is a continuous function of $\left(x^{m}, y^{m}\right)$ for $x^{m} \in \Lambda^{m}, x^{m} \notin F_{m}, y^{m} \in \Lambda^{m}$, $y^{m} \notin F_{m}$, provided we define $\bar{f}\left(x^{m}, y^{m}\right)=0$ for x^{m} or $y^{m} \in \bar{C}_{m}-C_{m}$.

The proof is the same as in I, Appendix 1 for x^{m} and $y^{m} \in \Lambda^{m}-\bar{C}_{m}-F_{m}$. The only point left to be proved is that for $x^{m}, y^{m} \in \Lambda^{m}-\bar{C}_{m}-F_{m}$, $\bar{f}\left(x^{m}, y^{m}\right) \rightarrow 0$ when for at least one pair (i, j), $\left|x_{i}-x_{i}\right| \rightarrow a$. Because $f\left(\omega^{m}\right)$ is bounded [by exp $(2 m \beta B)]$, it is sufficient to prove that when $\left|x-x^{\prime}\right| \rightarrow a$

$$
\begin{equation*}
J_{1}=\int_{\left|\omega-\omega^{\prime}\right| \geq a} P_{x y}^{\beta}(d \omega) P_{x^{\prime} y^{\prime}}^{\beta}\left(d \omega^{\prime}\right) \rightarrow 0, \tag{A1.3}
\end{equation*}
$$

where the integration is restricted to trajectories ω, ω^{\prime} such that $\left|\omega(t)-\omega^{\prime}(t)\right| \geq a$ for all $t \in[0, \beta]$.

[^69]Let $\left|x-x^{\prime}\right|=a+\epsilon$ and $0<\gamma<\beta$. We obtain an upper bound for J_{1} by replacing the above condition by the weaker one: $\left|\omega(t)-\omega^{\prime}(t)\right| \geq a$ for all $t \in[0, \gamma]$. Therefore,

$$
\begin{align*}
J_{1} \leq \int_{\mid \omega-\omega^{\prime}, \geq \geq a} & P_{x u}^{\gamma}(d \omega) d u P_{x^{\prime} u^{\prime}}^{\gamma}\left(d \omega^{\prime}\right) d u^{\prime} \tag{A1.7}\\
& \times \psi_{\beta-\gamma}(y-u) \psi_{\beta-\gamma}\left(y^{\prime}-u^{\prime}\right) \tag{A1.4}\\
& \leq[\pi(\beta-\gamma)]^{-\gamma} J_{2}, \tag{A1.5}
\end{align*}
$$

where

$$
\begin{equation*}
J_{2}=\int_{1 \omega-\omega^{\prime} \mid \geq a} P_{x u}^{\gamma}(d \omega) d u P_{x^{\prime} u^{\prime}}^{\gamma}\left(d \omega^{\prime}\right) d u^{\prime} \tag{A1.6}
\end{equation*}
$$

Let
$\eta=\gamma / n\left\{\begin{array}{lll}x_{i}=\omega(j \gamma / n), & x_{0}=x, & x_{n}=u, \\ x_{i}^{\prime}=\omega^{\prime}(j \gamma / n), & x_{0}^{\prime}=x^{\prime}, & x_{n}^{\prime}=u^{\prime} .\end{array}\right.$
Then,

$$
J_{2}=\lim _{n \rightarrow \infty} \int_{\left|x_{i}-x_{i}^{\prime}\right| \geq a} \prod_{i=1}^{n}\left[d x_{i} d x_{i}^{\prime} \psi_{\eta}\left(x_{i}-x_{i-1}\right) \psi_{\eta}\left(x_{i}^{\prime}-x_{i-1}^{\prime}\right)\right]
$$

$$
=\lim _{n \rightarrow \infty} \int_{\left|x_{i}-x_{i}^{\prime}\right| \geq a} \prod_{i=1}^{n}\left\{d\left(x_{i}-x_{i}^{\prime}\right) d\left(x_{i}+x_{i}^{\prime}\right) \psi_{2 \eta}\left[x_{i}-x_{i}^{\prime}-\left(x_{i-1}-x_{i-1}^{\prime}\right)\right] \psi_{2 \eta}\left(x_{i}+x_{i}^{\prime}-x_{i-1}-x_{i-1}^{\prime}\right)\right\}
$$

$$
=\lim _{x \rightarrow \infty} \int_{|u ;| \geq a} \prod_{i=1}^{n}\left[d u_{i} \psi_{2 \eta}\left(u_{i}-u_{j}^{\prime}\right)\right]
$$

$$
J_{2}=\int_{1 \omega \mid \geq a} P_{x-z^{\prime}, u}^{2 \gamma}(d \omega) d u
$$

where ω is now restricted to $|\omega(t)| \geq a$ for all $t \in$ $[0,2 \gamma] . J_{2}$ is obviously a decreasing function of γ. We now take $x^{\prime}=(0, \cdots, 0), x=(a+\epsilon, 0, \cdots, 0)$. Let $0<r<a$ and $0<\gamma^{\prime}<2 \gamma$. We obtain an upper bound for J_{2} by replacing the above restriction by the weaker one: If the component of $\omega(t)$ perpendicular to $0 x$ satisfies $\left|\omega_{\perp}(t)\right| \leq r$ for all $t \in\left[0, \gamma^{\prime}\right]$, then the component along $0 x$ satisfies $\omega_{x}(t)>a-\epsilon$ for all $t \in\left[0, \gamma^{\prime}\right]$, provided $r^{2} \leq \epsilon(2 a-\epsilon)$. Therefore,
$J_{2} \leq P_{x}\left(K^{\prime}\left(r, \gamma^{\prime}\right)\right)+\int_{\omega_{s}(t) \geq a-\epsilon} P_{a+\epsilon, u_{\varepsilon}}^{\gamma^{\prime}}\left(d \omega_{x}\right) d u_{x}$.

Now $P_{x}\left(K^{\prime}\left(r, \gamma^{\prime}\right)\right) \leq 2 \sigma\left(\frac{1}{4} r, \gamma^{\prime}\right) \rightarrow 0$ if $r^{2} / \gamma^{\prime} \rightarrow \infty$ [Ref. 8, Appendix 1]. The second term is easily seen to be the one dimensional integral $\int_{0}^{\infty} d u\left[\psi_{\gamma}(u-2 \epsilon)-\right.$ $\left.\psi_{\gamma}(u+2 \epsilon)\right]$ and $\rightarrow 0$ if $\epsilon^{2} / \gamma^{\prime} \rightarrow 0$. We finally choose $r^{2}=\epsilon(2 a-\epsilon)$ and $\gamma^{\prime}=\epsilon r$, and see that $J_{2} \rightarrow 0$ as $\epsilon \rightarrow 0$, whence, the result.
Note that the proof rests on the following geometrical property: Any point x_{0} of the boundary of the core is the limit as $\epsilon \rightarrow 0$ of a point $x(\epsilon)$ which is outside the core, at a distance ϵ from x_{0}, and such that there exists a disk $D(\epsilon)$ of radius $r(\epsilon)$ with the following properties:
(a) x_{0} and $x(\epsilon)$ lie on the axis of $D(\epsilon)$; (b) $D(\epsilon)$ lies entirely inside the core; (c) $d(\epsilon)$ being the distance from $x(\epsilon)$ to $D(\epsilon), d(\epsilon) / r(\epsilon) \rightarrow 0$ as $\epsilon \rightarrow 0$.

[^70]Therefore, if the boundary of Λ is sufficiently smooth, the same method shows that $\bar{f}\left(x^{m}, y^{m}\right) \rightarrow 0$ as one of the x 's or one of the y 's tends to a point of this boundary. Sufficient conditions are that Λ be convex, or its boundary of class \mathfrak{C}^{2}.

Integral Representation of $\exp (-\beta H m)$

The Wiener integral representation of $\exp (-\beta H m)$ is obtained as in I. The subdomain of $L^{2}\left(\Lambda^{m}-C_{m}\right)$ on which the infinitesimal generator of the semi group T_{β} is shown to coincide with the usual Hamiltonian is now the class of twice differentiable functions with compact support $\subset \Lambda^{m}-\bar{C}_{m}-F_{m}$.

APPENDIX 2

Solutions of (2.15)

We consider the equations

$$
\begin{array}{r}
\varphi(\omega) \gtreqless \xi F(\varphi) \equiv \xi \int P_{00}(d \bar{\omega})[v(\omega-\bar{\omega})+A] \\
\times \exp [\varphi(\bar{\omega})] \tag{A2.1}
\end{array}
$$

to which we shall refer as $(\geq),(=), \cdots$ etc. according to the sign standing in the middle. We are interested in solutions of (\geq) with the largest possible $\xi>0$ and for given ξ, with the smallest possible $\varphi \geq 0$.

We restrict our attention to $\xi \geq 0, \varphi \geq 0$. Then,
(1) If $F\left(\varphi_{1}\right)$ exists and $\varphi_{1} \geq \varphi_{2}$, then $F\left(\varphi_{2}\right)$ exists and $F\left(\varphi_{1}\right) \geq F\left(\varphi_{2}\right)$. In particular, $\varphi \geq 0$ implies
$F(\varphi) \geq\left(v_{0}+A\right) / \lambda^{\prime \prime}$, where v_{0} is the volume of the hard core.
(2) If ($\left.\xi>0, \varphi_{0}>0\right)$ is a solution of (\geq), then the sequence $\varphi_{0}, \varphi_{n}=\xi F\left(\varphi_{n-1}\right)$ is decreasing, bounded from below by $\xi\left(v_{0}+A\right) / \lambda^{\nu}$ and, therefore, converges simply to some $\varphi\left(\xi\left(v_{0}+A\right) / \lambda^{\nu} \leq \varphi(\omega) \leq \varphi_{0}(\omega)\right)$ which is a solution of ($=$). $\varphi \leq \varphi_{0}$ means that φ is better than φ_{0} for our purpose.
(3) If $(\xi>0, \varphi>0)$ is a solution of (\geq), then (ξ^{\prime}, φ) is also a solution of (\geq) for $0 \leq \xi^{\prime} \leq \xi$. Therefore, $(=)$ has a solution for any $\xi^{\prime} \leq \xi$.
(4) For ξ sufficiently large, (\geq) has no solution. In fact, (\geq) implies
$\xi \leq \frac{\varphi(\omega)}{F(\varphi)} \leq \frac{\lambda^{\nu}}{v_{0}+A} \frac{\operatorname{Inf} \varphi}{\exp (\operatorname{Inf} \varphi)} \leq \frac{\lambda^{\prime}}{\left(v_{0}+A\right) e}$.
Therefore, there exists $\xi_{0} \geq 0$ such that ($=$) has a solution (ξ, φ) for any $\xi<\xi_{0}$ and no solution for $\xi>\xi_{0}$. We see below that $\xi_{0} \neq 0$.
(5) If (ξ, φ_{0}) is a solution of (\geq) $\left(0 \leq \xi<\xi_{0}\right)$, then the sequence $\varphi_{1}=0, \varphi_{n}=\xi F\left(\varphi_{n-1}\right)$ is increasing and bounded by φ_{0}, therefore, converges to some $\varphi_{\xi} \leq \varphi_{0}$, which is a solution of $(=) . \varphi_{\xi}$ is the smallest possible solution for that given ξ. For if φ^{\prime} is a positive solution of ($=$), the preceding sequence is bounded term by term by the sequence $\varphi_{1}^{\prime}=\varphi^{\prime}, \varphi_{n}^{\prime}=F\left(\varphi_{n-1}^{\prime}\right)=\varphi^{\prime}$. The solution is not unique in general [as a trivial example, take $v(\omega-\bar{\omega})=0$, no hard core].
(6) In order to show that $\xi_{0} \neq 0$, it is sufficient to find an equation

$$
\begin{equation*}
\varphi(\omega)=\xi \int P_{00}(d \bar{\omega}) w(\omega, \bar{\omega}) \exp [\varphi(\bar{\omega})] \tag{A2.3}
\end{equation*}
$$

with

$$
\begin{equation*}
w(\omega, \bar{\omega}) \geq v(\omega-\bar{\omega})+A \tag{A2.4}
\end{equation*}
$$

which has a real positive solution ($\xi>0, \varphi>0$). (ξ, φ) will then be a solution of (\geq), and therefore, $\xi_{0} \geq \xi>0$. We need:

Lemma: There exists a constant $\eta>0$ such that $v(\omega-\bar{\omega}) \leq \eta v(\omega) v(\bar{\omega}) / v_{0}$.
There is strong evidence, but we have been unable to prove, that one can take $\eta=1$. Elementary geometrical considerations give easily the ridiculous value $\eta=72^{\nu}$. The specific value of η is irrelevant in the argument, and we take for simplicity $\eta=1$ in what follows. We can then take

$$
\begin{equation*}
w(\omega, \bar{\omega})=v(\omega) v(\bar{\omega}) / v_{0}+A . \tag{A2.5}
\end{equation*}
$$

The solutions of (A2.3) are of the form $\varphi(\omega)=$ $\tau v(\omega)+\sigma$, where τ and σ are determined by
$F(\sigma, \tau, \xi) \equiv \tau_{0}-\xi e^{\sigma} \int P_{00}(d \omega) v(\omega) \exp [\tau v(\omega)]=\mathbf{0}$,
$G(\sigma, \tau, \xi) \equiv \sigma-A \xi e^{\sigma} \int P_{00}(d \omega) \exp [\tau v(\omega)]=0$.
Now let

$$
\begin{equation*}
f_{\beta_{r}}(x)=\int P_{0 x}^{\beta}(d \omega) \exp [\tau v(\omega)] \tag{A2.7}
\end{equation*}
$$

We first show that for given complex τ, for β real positive sufficiently small, $f_{\beta \tau}$ exists and is a bounded integrable function of x. Let

$$
\begin{equation*}
K_{p}^{\prime}=K^{\prime}(b, \beta / 2 p) \quad(p \text { integer }, p \geq 1) \tag{A2.8}
\end{equation*}
$$

where $K^{\prime}(r, \gamma)$ is defined by (I.A1.5). If $\omega \notin K_{p}^{\prime}$, ω is contained in the union of the p spheres of radius b with centers at the points $\omega((2 n-1) \beta / 2 p), n=$ $1, \cdots, p$. Therefore, $v(\omega) \leq p v$, where v is the volume of a sphere of radius $(a+b)$. From this it follows easily that

$$
\begin{align*}
\left|f_{\beta_{r}}(x)\right| \leq & \psi_{\beta}(x)+\left(e^{|\tau|}-1\right) \\
& \times\left[\psi_{\beta}(x)+\sum_{1}^{\infty} e^{p o|\tau|} P_{0 x}\left(K_{p}^{\prime}\right)\right], \tag{A2.9}
\end{align*}
$$

and similarly,

$$
\begin{align*}
\int\left|f_{\beta r}(x)\right| d x & \leq 1+\left(e^{p|\tau|}-1\right) \\
& \times\left[1+\sum_{p=1}^{\infty} e^{p \nabla|\tau|} P_{0}\left(K_{p}^{\prime}\right)\right] \tag{A2.10}
\end{align*}
$$

where $P_{0}\left(K_{p}^{\prime}\right)=\int_{\omega \in K_{p}{ }^{\prime}} P_{0 x}^{\beta}(d \omega) d x$. Now from (I.A1.7)

$$
\begin{equation*}
P_{0 x}\left(K_{\searrow}^{\prime}\right) \leq\left(c / \lambda^{\prime}\right) 2 p \sigma(b / 4, \beta / 2 p) \tag{A2.11}
\end{equation*}
$$

and from (I.A1.4)
$\sigma(b / 4, \beta / 2 p) \lesssim\left(\right.$ polynomial in $\left.p b^{2} / 8 \beta\right)$

$$
\begin{equation*}
\times \exp \left(-p b^{2} / 8 \beta\right) \tag{A2.12}
\end{equation*}
$$

Therefore, for $\beta<b^{2} / 8 v|\tau|$, the series in (A2.9) is absolutely convergent, and $f_{\beta \tau}$ is a bounded function of $x\left(f_{\beta \tau} \in L^{\infty}\right)$. Analogous bounds on $P_{0}\left(K_{p}^{\prime}\right)$ [Ref. 8, especially Appendix 1] show that under the same condition on β, the series in (A2.10) converges and $f_{\beta_{r}}$ is an integrable function of $x\left(f_{\beta r} \in L^{1}\right)$.

We next show that for any complex τ and any real positive $\beta, f_{\beta r}$ exists, $f_{\beta r} \in L^{1}$ and $f_{\beta \tau} \in L^{m}$. For any two trajectories (ω_{1}, ω_{2}) of respective lengths β_{1} and β_{2}, and such that $\omega_{1}\left(\beta_{1}\right)=\omega_{2}(0)$, we define the trajectory $\omega_{1} \cup \omega_{2}$ of length $\beta_{1}+\beta_{2}$ by

$$
\begin{array}{rlrl}
\left(\omega_{1} \cup \omega_{2}\right)(t) & =\omega_{1}(t) & & 0 \leq t \leq \beta_{1} \tag{A2.13}\\
& =\omega_{2}\left(t-\beta_{1}\right) & \beta_{1} \leq t \leq \beta_{1}+\beta_{2}
\end{array}
$$

Then obviously

$$
\begin{align*}
v\left(\omega_{1} \cup \omega_{2}\right) \leq v\left(\omega_{1}\right)+ & v\left(\omega_{2}\right)-v_{0} \\
& <v\left(\omega_{1}\right)+v\left(\omega_{2}\right) . \tag{A2.14}
\end{align*}
$$

Therefore, for any complex τ,

$$
\begin{equation*}
\left|f_{\beta_{1}+\beta_{3}, \tau}\right| \leq f_{\beta_{1},|\tau|} * f_{\beta_{2},|\tau|} \tag{A2.15}
\end{equation*}
$$

where * means convolution, and in particular,

$$
\begin{equation*}
\left|f_{\beta, \tau}(x)\right| \leq f_{\beta / n,|\tau|}^{* n}(x), \tag{A2.16}
\end{equation*}
$$

whence,

$$
\begin{equation*}
\left\|f_{\beta_{7}}\right\|_{1} \leq\left\|f_{\beta / n,|\tau|}\right\|_{1}^{n} \tag{A2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|f_{\beta r}\right\|_{\infty} \leq\left\|f_{\beta / n,|r|}\right\|_{1}^{n-1}\left\|f_{\beta / n,|r|}\right\|_{\infty} . \tag{A2.18}
\end{equation*}
$$

For any complex τ and real positive β. one can choose n sufficiently large for the right-hand side of (A2.16) to exist, whence, the result. Finally, from

$$
\begin{gather*}
\left|\frac{f_{\beta, \tau_{1}}(x)-f_{\beta, \tau_{2}}(x)}{\tau_{1}-\tau_{2}}-\int P_{0 x}^{\beta}(d \omega) v(\omega) \exp \left[\tau_{2} v(\omega)\right]\right| \\
\leq\left|\tau_{1}-\tau_{2}\right| f_{\beta,\left|\tau_{2}\right|+\left|\tau_{2}-\tau_{2}\right|}(x), \tag{A2.19}
\end{gather*}
$$

it follows that $f_{\beta \tau}(x)$ is an entire function of τ for fixed β, x. We now come back to the system (A2.6). F and G are entire functions of ξ, σ, τ and $D(F, G) /\left.D(\sigma, \tau)\right|_{\xi=\sigma=\tau=0}=v_{0}$. Therefore, (A2.6) defines σ and τ as analytic functions of ξ near $\xi=0$, with $\sigma(0)=\tau(0)=0$. For ξ real positive, σ and τ are real positive. Therefore, (A2.3) has a solution for some $\xi>0$; therefore, $\xi_{0} \neq 0$.
(7) We only mention that (A2.1) has a complex solution (ξ, φ) such that for fixed ω, φ is an analytic function of ξ for $|\xi|<\xi_{0}$, and φ coincide with φ_{ξ} for $\xi \in\left[0, \xi_{0}[\right.$. The proof is elementary and makes use of the existence of an analytic solution of (A2.3) near $\xi=0$ (cf. Ref. 9).
(8) We finally give some properties of $\varphi_{\xi}(\omega)$ $\left(0 \leq \xi<\xi_{0}\right), \Delta(\omega)=\xi \exp \left[\varphi_{\xi}(\omega)\right]$ and $f_{\beta}(x)(2.15)$. From ($=$) and (A2.5),

$$
\begin{equation*}
\varphi_{\xi}(\omega) \leq \tau v(\omega)+\sigma, \tag{A2.20}
\end{equation*}
$$

where
$\tau=\left(\xi / v_{0}\right) \int P_{00}(d \omega) v(\omega) \exp \left[\varphi_{\xi}(\omega)\right]$,
$\sigma=A \xi \int P_{00}(d \omega) \exp \left[\varphi_{\xi}(\omega)\right]=A f_{\beta}(0)$.
From (A2.20) and the properties of $f_{\beta, 7}$, it follows that $\Delta(\omega)$ is an integrable function of ω and that $f_{\beta}(x)$ is a bounded integrable function of x.

[^71]
Limit of Infinite Volume

We first consider [see (2.24)]
$\int_{K^{\prime}(l / 2, \beta)} P_{00}(d \bar{\omega})[v(\omega-\bar{\omega})+A] \Delta(\bar{\omega}) \alpha_{L}(\omega)$
$\leq \int_{K^{\prime}(t / 2, \beta)} P_{00}(d \bar{\omega})\left[\frac{v(\omega) v(\bar{\omega})}{v_{0}}+A\right] \Delta(\bar{\omega}) \alpha_{L}(\omega)$,
and show that this quantity $\rightarrow 0$ as $l \rightarrow \infty$ for $L=L_{0}+p l$ (L_{0} and p positive constants). Now $\alpha_{L}(\omega) v(\omega) \leq$ const $\cdot L^{\nu}$. Therefore, it is sufficient to show that
$\int_{K^{\prime}(r, \beta)} P_{00}(d \omega) v(\omega) \Delta(\omega) \rightarrow 0$ as $r \rightarrow \infty$
faster than any power of r.
For any $\omega \in K^{\prime}(r, \beta), v(\omega) \geq$ const $\times r$. Therefore, it is sufficient to show that for any integer n,
$I_{n}(r)=\int_{K^{\prime}(r, \beta)} P_{00}(d \omega)[v(\omega)]^{n} \Delta(\omega) \rightarrow 0 \quad$ as $\quad r \rightarrow \infty$.
From (A2.20) and the properties of $f_{\beta, r}$, it follows that $[v(\omega)]^{n} \Delta(\omega)$ is integrable. This implies ${ }^{10}$ that $I_{n}(r) \rightarrow 0$ as $r \rightarrow \infty$.

We now show that $\int_{K^{\prime}(r, \beta)} P_{x y}(d \omega) \Delta(\omega) \rightarrow 0$ as $r \rightarrow \infty$ uniformly with respect to (x, y). From (A2.20) and (A2.15) we obtain

$$
\begin{align*}
& \int_{K^{\prime}(r, \beta)} P_{x y}(d \omega) \Delta(\omega) \\
& \quad \leq 2 \xi e^{\sigma} \int_{K^{\prime}(r / 2, \beta / 2)} P_{x u}^{\beta / 2}(d \omega) d u \exp [\tau v(\omega)] \\
& \quad \times \int P_{u, y}^{\beta / 2}\left(d \omega^{\prime}\right) \exp \left[\tau v\left(\omega^{\prime}\right)\right] \tag{A2.24}\\
& \quad \leq 2 \xi e^{\sigma}\left\|f_{\beta / 2, \mid \tau \tau}\right\|_{\infty} \\
& \quad \times \int_{K^{\prime}(r / 2, \beta / 2)} P_{0 u}^{\beta / 2}(d \omega) d u \exp [\tau v(\omega)] \tag{A2.25}
\end{align*}
$$

The last member is independent of (x, y) and $\rightarrow 0$ as $r \rightarrow \infty$. ${ }^{10}$

Cluster Property-Properties of $h(x)$ (3.9)

From the symmetry of the relation between the trajectories $\omega, \bar{\omega}$, and $(\omega-\bar{\omega})$, we get

$$
\begin{equation*}
v_{0} / v(\bar{\omega}) \leq v(\omega-\bar{\omega}) / v(\omega) \leq v(\bar{\omega}) / v_{0} \tag{A2.26}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
h(x) \leq & {\left[\int P_{0 x}(d \bar{\omega})[v(\bar{\omega})+A] \Delta(\bar{\omega})\right] } \\
& \times\left[v_{0}^{2} \int P_{00}(d \bar{\omega})[v(\bar{\omega})]^{-1} \Delta(\bar{\omega})\right]^{-1} \tag{A2.27}
\end{align*}
$$

[^72]Therefore, h is integrable and bounded. We now show that $h(x) \geq f_{\beta}(x) / f_{\beta}(0)$. We write

$$
\begin{align*}
h(x) & =\sup _{\omega}\left\{\left[\int P_{0 x}(d \bar{\omega}) \frac{\imath(\omega-\bar{\omega})+A}{v(\omega)} \Delta(\bar{\omega})\right]\right. \\
& \left.\times\left[\int P_{00}(d \bar{\omega}) \frac{(\omega-\bar{\omega})+A}{v(\omega)} \Delta(\bar{\omega})\right]^{-1}\right\} . \tag{A2.28}
\end{align*}
$$

Now take $\omega=m \omega_{0}$, where ω_{0} is fixed and $m>0$ (ω_{0} being not reduced to a single point). When $m \rightarrow \infty,[v(\omega-\bar{\omega})+A] / v(\omega)$, considered as a function of $\bar{\omega}$ tends to one simply and is bounded by $[v(\bar{\omega})+A] / v_{0}$. Therefore, by the Lebesgue bounded convergence theorem, ${ }^{7}$ the numerator and denominator in (A2.28) tend, respectively, to $f_{\beta}(x)$ and $f_{\beta}(0)$, whence, the result.

APPENDIX 3

Solutions of (4.17)

We consider the system

$$
\begin{align*}
\varphi(\omega, k) & \geq F_{k}(\xi, \varphi) \equiv \sum_{i=1}^{\infty} \xi^{i} \int P_{00}^{i}(d \bar{\omega}) \\
& \times \exp [\varphi(\bar{\omega}, j)]\left\{\frac{1}{j} v(\omega, \bar{\omega})+k A e^{i \beta B}\right\}, \tag{A3.1}
\end{align*}
$$

or more simply, $\varphi \geq F(\xi, \varphi)$.
We restrict our attention to $\xi \geq 0, \varphi \geq 0$. With the convention that $\varphi_{1} \geq \varphi_{2}$ means $\varphi_{1}(\omega, j) \geq \varphi_{2}(\omega, j)$ for all j and all ω, the remarks (1) to (5) of Appendix 2 hold without change. We turn to (6).

$$
\begin{equation*}
\text { (6) As previously } v(\omega, \bar{\omega}) \leq v(\omega) v(\bar{\omega}) / v_{0} \tag{A3.2}
\end{equation*}
$$

We therefore consider the system

$$
\begin{align*}
\varphi(\omega, k)= & \sum_{1}^{\infty} \xi^{i} \int P_{00}^{i}(d \bar{\omega}) \exp [\varphi(\bar{\omega}, j)] \\
& \times\left\{\left(\dot{v}_{0}\right)^{-1} v(\omega) v(\bar{\omega})+k A e^{i \beta B}\right\}, \tag{A3.3}
\end{align*}
$$

the solutions of which are of the form $\varphi(\omega, k)=$ $\tau v(\omega)+k \sigma$, where τ and σ are determined by

$$
\begin{align*}
F(\sigma, \tau, \xi) & \equiv \tau v_{0}-\sum_{i=1}^{\infty} \frac{\left(\xi e^{\sigma}\right)^{i}}{j} \\
& \times \int P_{00}^{i}(d \bar{\omega}) v(\bar{\omega}) \exp [\tau v(\bar{\omega})]=0, \tag{A3.4}\\
G(\sigma, \tau, \xi) & \equiv \sigma-A \sum_{i=1}^{\infty}\left(\xi e^{\beta B+\sigma}\right)^{i} \\
& \times \int P_{00}^{j}(d \bar{\omega}) \exp [\tau v(\bar{\omega})]=0 .
\end{align*}
$$

Now, from (A2.14) and (A2.18), for any complex τ,

$$
\begin{align*}
& \left|\int P_{00}^{i}(d \omega) \exp [\tau v(\omega)]\right|=\left|f_{i \beta, 7}(0)\right| \\
& \quad \leq\left\|f_{i \beta, \tau}\right\|_{\infty} \leq\left\|f_{\beta,|r|}\right\|_{\infty} \times\left\|f_{\beta,|r|}\right\|_{1}^{i-1} . \tag{A3.5}
\end{align*}
$$

Therefore, the series in (A3.4) converges for $\xi e^{\sigma}\left\|f_{\beta_{, \tau}}\right\|_{1}<1$ and $\xi e^{\sigma+\beta B}\left\|\mid f_{\beta_{,} \tau}\right\|_{1}<1$, respectively. From this and the fact that $f_{i \beta, r}$ is an entire function of τ, it follows that $F(\sigma, \tau, \xi)$ and $G(\sigma, \tau, \xi)$ are analytic functions of (σ, τ, ξ) near ($0,0,0$). Furthermore $D(F, G) /\left.D(\sigma, \tau)\right|_{0,0,0}=v_{0}$. Therefore, (A3.4) determines σ and τ as analytic functions of ξ near $\xi=0$, with $\sigma(0)=0, \tau(0)=0$. For ξ real positive, σ and τ are real positive. Therefore, (A3.3) has a solution for some $\xi>0$; therefore, $\xi_{0} \neq 0$ as previously.
(7) The same remark as in Appendix 2 applies here.
(8) We finally give some properties of the solution $\varphi_{\xi}(\omega, j)\left(0 \leq \xi<\xi_{0}\right), \Delta(\omega, j)$ [Eq. (4.16)] and g_{ξ} [Eq. (4.21)].

From (A3.1, 2) we obtain

$$
\begin{equation*}
\varphi_{\xi}(\omega, k) \leq \tau v(\omega)+k \sigma, \tag{A3.6}
\end{equation*}
$$

where

$$
\begin{align*}
& \tau=\frac{1}{v_{0}} \sum_{i=1}^{\infty} \frac{\xi^{i}}{j} \int P_{00}^{i}(d \omega) v(\omega) \exp \left[\varphi_{\xi}(\omega, j)\right] \tag{A3.7}\\
& \sigma=A \sum_{i=1}^{\infty}\left(\xi e^{\beta B}\right)^{i} \int P_{00}^{i}(d \omega) \exp \left[\varphi_{\xi}(\omega, j)\right] .
\end{align*}
$$

From (A3.1), we obtain for any pair ($\left.\omega_{1}, j_{1}\right)\left(\omega_{2}, j_{2}\right)$

$$
\begin{align*}
\varphi\left(\omega_{1}, j_{1}\right) \leq \varphi\left(\omega_{1} \cup\right. & \left.\omega_{2}, j_{1}+j_{2}\right) \\
& \leq \varphi\left(\omega_{1}, j_{1}\right)+\varphi\left(\omega_{2}, j_{2}\right) \tag{A3.8}
\end{align*}
$$

From (A3.6) and the properties of $f_{i \beta . r}$, it follows that $\Delta(\omega, j)$ is an integrable function of ω. We define now

$$
\begin{equation*}
g_{\xi \xi^{\prime}}(x)=\sum_{i=1}^{\infty} \xi^{\prime i} \int P_{0 z}^{i}(d \omega) \exp \left[\varphi_{\xi}(\omega, j)\right] \tag{A3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
g_{\xi}(x)=g_{\xi \xi}(x) \tag{A3.10}
\end{equation*}
$$

which is identical with (4.21).
From the convergence of the series in (A3.3) for $\xi<\xi_{0}$, it follows that $g_{\xi^{\prime}}(0)$ exists for $\xi<\xi_{0}$, $\xi^{\prime}<\xi_{0} \exp (\beta B)$. There is strong evidence, but we have been unable to prove, that under the same conditions, the series (A3.9) converges in L^{1} [and therefore in L°, due to (A3.8)], from which it would follow that $g_{\xi}(x)$ is a bounded integrable function
of x for $\xi<\xi_{0}$. From (A3.8) however, it follows that $\int P_{o x}^{i}(d \omega) \exp \left[\varphi_{\xi}(\omega, j)\right] d x$

$$
\begin{equation*}
\leq\left\{\int P_{0 x}^{1}(d \omega) \exp \left[\varphi_{\xi}(\omega, 1)\right] d x\right\}^{i} \tag{A3.11}
\end{equation*}
$$

Therefore, the series in (A3.9) converges in L^{1} for $\xi<\xi_{0}$,

$$
\begin{equation*}
\xi^{\prime}<\left\{\int P_{0 x}^{1}(d \omega) d x \exp \left[\varphi_{\xi}(\omega, 1)\right]\right\}^{-1} \tag{A3.12}
\end{equation*}
$$

Therefore, there exists some $\left.\left.\xi_{1} \in\right] 0, \xi_{0}\right]$ such that $g_{\xi}(x)$ be in L^{1} and L^{*} for $\xi<\xi_{1}$.

Limit of Infinite Volume

We first show that the expression (4.28) tends to zero as l tends to infinity for $L=L_{0}+p l, L_{0}$ and p positive constants. As in Appendix 2, it is sufficient to show that the two series

$$
\begin{equation*}
\sum_{i=1}^{\infty} e^{i \beta B} \int_{K^{\prime}(1 / 2, j \beta)} P_{00}^{i}(d \omega) \Delta(\omega, j) \tag{A3.13}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{\infty} \frac{1}{j} \int_{K^{\prime}(l-a, j \beta)} P_{00}^{j}(d \omega)[v(\omega)]^{n} \Delta(\omega, j) \tag{A3.14}
\end{equation*}
$$

tend to zero as $l \rightarrow \infty$. It is easily seen that both are uniformly convergent with respect to l and that each term of both tends to zero as $l \rightarrow \infty$, whence, the result. We now show that

$$
\sum_{i=1}^{\infty} \int_{K^{\prime}(r, i \beta)} P_{x \nu}^{i}(d \omega) \Delta(\omega, j)
$$

tends to zero as r tends to infinity uniformly with respect to (x, y). Now if $(\omega, j)=\left(\omega_{1}, j_{1}\right) \cup\left(\omega_{2}, j_{2}\right)$ lies in $K^{\prime}(r, j \beta)$, then either $\left(\omega_{1}, j_{1}\right)$ lies in $K^{\prime}\left(r / 2, j_{1} \beta\right)$ or (ω_{2}, j_{2}) lies in $K^{\prime}\left(r / 2, j_{2} \beta\right)$. From this and (A3.8), we get
$\sum_{j=1}^{\infty} \int_{K^{\prime}(r, i \beta)} P_{x y}^{j}(d \omega) \Delta(\omega, j)$
$\leq \int_{K^{\prime}(r / 2, \beta)} P_{x u}^{1}(d \omega) d u \Delta(\omega, 1)$
$\times\left[1+\sum_{i=1}^{\infty} \int P_{u y}^{i}(d \omega) \Delta(\omega, j)\right]$
$+\int P_{x u}^{1}(d \omega) \Delta(\omega, 1) d u \sum_{i=1}^{\infty} \int_{K^{\prime}(r / 2, ; \beta)} P_{u y}^{i}(d \omega) \Delta(\omega, j)$

$$
\begin{align*}
& \leq \int_{K^{\prime}(r / 2, \beta)} P_{0 u}^{1}(d \omega) d u \Delta(\omega, 1)\left[1+\left\|g_{\xi}\right\|_{\infty}\right] \tag{A3.15}\\
& +\left\|\int P_{0 x}^{1}(d \omega) \Delta(\omega, 1)\right\|_{\infty} \\
& \times\left\{\sum_{1}^{\infty} \int_{K^{\prime}(r / 2, ; \beta)} P_{o u}^{i}(d \omega) \Delta(\omega, j) d u\right\} . \tag{A3.16}
\end{align*}
$$

The last member is easily seen to tend to zero as $r \rightarrow \infty$, whence the result.

Cluster Property

We consider the system (5.15) which we write

$$
\begin{equation*}
\varphi^{\prime} \geq F\left(\xi^{\prime}, \varphi^{\prime}\right)+\mu G\left(\xi^{\prime}, \varphi^{\prime}\right) \tag{A3.17}
\end{equation*}
$$

with

$$
\begin{equation*}
\Delta^{\prime}(\omega, k)=\xi^{\prime k} \exp \left[\varphi^{\prime}(\omega, k)\right] \tag{A3.18}
\end{equation*}
$$

and obvious notations for F and G. For $\mu=0$, (A3.17) reduces to (A3.1). [For $\mu>0$, the same arguments as previously show that (A3.17) has positive solutions for $0 \leq \xi^{\prime}<\xi_{0}^{\prime} . G$ is positive; therefore, $\xi_{0}^{\prime} \leq \xi_{0}$.]

We now show that if $\xi<\xi_{0}$ and if $g_{\xi} \in L^{1}$, for any $\xi^{\prime}<\xi$, (A3.17) has a solution $\xi^{\prime}, \varphi^{\prime}$ for μ sufficiently small.

Let ξ, φ_{ξ} be the solution of $\varphi=F(\xi, \varphi)$.
Then

$$
\begin{equation*}
\varphi_{\xi} \geq F\left(\xi^{\prime}, \varphi_{\xi}\right)+\left(\xi / \xi^{\prime}-1\right) F\left(\xi^{\prime}, \varphi_{\xi}\right) \tag{A3.19}
\end{equation*}
$$

If $g_{\xi} \in L^{1}$, then $G\left(\xi^{\prime}, \varphi_{\xi}\right)$ exists and satisfies

$$
\begin{equation*}
\left[G\left(\xi^{\prime}, \varphi_{\xi}\right)\right](\omega, k) \leq a v(\omega)+b k, \tag{A3.20}
\end{equation*}
$$

where a and b are positive constants.
On the other hand, $F\left(\xi^{\prime}, \varphi_{\xi}\right)$ is easily seen to be bounded from below by

$$
\begin{equation*}
\left[F\left(\xi^{\prime}, \varphi_{\xi}\right)\right](\omega, k) \geq a^{\prime} v(\omega)+b^{\prime} k \tag{A3.21}
\end{equation*}
$$

with $a^{\prime}>0, b^{\prime}>0$.
Therefore,

$$
\begin{equation*}
G\left(\xi^{\prime}, \varphi_{\xi}\right) \leq m F\left(\xi^{\prime}, \varphi_{\xi}\right) \tag{A3.22}
\end{equation*}
$$

with $m>0$. Therefore, (A3.17) has a solution for $\mu \leq m^{-1}\left(\xi / \xi^{\prime}-1\right)$. The solution ($\xi^{\prime}, \varphi_{\xi}^{\prime}$) corresponding to the sign " $=$ " in (A3.17) satisfies $\varphi_{\xi}^{\prime}, \leq \varphi_{\xi}$. Therefore, the convergence of the g_{ξ} series (4.21) in L^{1} implies the convergence of the g_{ξ}^{\prime} series (5.25) in L^{1}.

[^0]: * On leave of absence from the University of Rochester, Rochester, New York.
 \dagger Research supported by the Air Force Office of Scientific Research under Grant AF EOAR 64-46 through the European Office of Aerospace Research (OAR), U. S. Air Force.
 \ddagger Research supported by the U. S. Atomic Energy Commission under Contract AT(30-1)-3399.
 ${ }^{1}$ Y. Ne'eman, Nucl. Phys. 26, 222 (1961); M. Gell-Mann, California Institute of Technology Report CTSL-20, 1961, (unpublished) and Phys. Rev. 125, 1067 (1962); S. Okubo, Progr. Theoret. Phys. (Kyoto) 27, 949 (1962).
 ${ }^{2}$ P. Tarjanne and V. Teplitz, Phys. Rev. Letters 11, 447 (1963); D. E. Neville, ibid. 13, 118 (1964); Y. Hara, Phys. Rev. 134, B701 (1964); H. Bacry, J. Nuyts, and J. Prentki, Phys. Letters 9, 279 (1964); C. R. Hagen and A. J. Mac-

[^1]: farlane, Phys. Rev. 135, B432 (1964); W. Krolikowski, Nuovo Cimento 33, 243 (1964), and Nucl. Phys. 52, 342 (1964); L. Cohen, preprint (1964); D. Amati, H. Bacry, J. Nuyts, and J. Prentki, Phys. Letters 11, 100 (1964); J. D. Bjorken and S. L. Glashow, ibid., 255; I. S. Gerstein and M. L. Whippman, Phys. Rev. 136, B829 (1964) and preprint, 1964; D. Speiser and R. J. Oakes, Phys. Rev. Letters 13, 579 (1964); M. Parkinson, ibid., 588; Z. Maki and Y. Ohnuki, Progr. Theoret. Phys. (Kyoto) 32, 144 (1964); V. V. Vladimirski, preprint (1964). See also A. Salam, International Center for Theoretical Physics, Trieste, unpublished report where references may be found to related contributions to the 1964 International Conference on High Energy Physics, Dubna, August 1964.
 ${ }^{3}$ C. Lovelace, Nuovo Cimento 37, 225(1965); H. Bacry, J. Nuyts, and J. Prentki, Ref. 2 and preprint (1964); I. S. Gerstein and M. L. Whippman, preprint, Ref. 2; G. Costa, Nuovo Cimento 34, 257 (1964). See also A. Salam, Ref. 2.
 ${ }^{4}$ F. Gürsey and L. A. Radicati, Phys. Rev. Letters 13, 173 (1964); A. Pais, ibid., 175; F. Gürsey, A. Pais, and L. A. Radicati, ibid., 299; T. K. Kuo and T. Yao, ibid., 415; M. A. B. Beg, B. W. Lee, and A. Pais, ibid., $514 ;$ M. A. B. Beg and V. Singh, ibid., 418 and 509; B. Sakita, ibid., 643 (1964); and Phys. Rev. H. J. Lipkin, ibid., 590.

 5 E. P. Wigner, Phys. Rev. 51, 106 (1937); E. P. Wigner nad E. Feenberg, Rept. Progr. Phys. 8, 274 (1941).

[^2]: ${ }^{6}$ R. E. Marshak and S. Okubo, Nuovo Cimento 19, 1226 (1961); J. Schwinger, Phys. Rev. Letters 12, 237 (1964); Phys. Rev. 135, B816 (1964); Phys. Rev. Letters 13, 355 (1964); and Phys. Rev. 136, B1821 (1964); I. S. Gerstein and K. T. Mahanthappa, Phys. Rev. Letters 12, 570 (1964), and Nuovo Cimento 36, 488 (1965); M. Suzuki, Phys. Rev. 136, B272 (1964); E. Johnson and R. F. Sawyer, Phys. Letters 9, 212 (1964); E. Johnson, R. F. Sawyer, and K. C. Wali, Phys. Rev. Letters 13, 141 (1964); P. G. O. Freund and Y. Nambu, ibid. p. 220; ibid. 12,714 (1964); M. Gell-Mann, Physics 1, 63 (1964); F. Gürsey, T. D. Lee, and M. Nauenberg, Phys. Rev. 135, B467 (1964); R. E. Marshak, N. Mukunda, and S. Okubo, Phys. Rev. 137, B698 (1965). See also A. Salam, Ref. 2.
 ${ }_{7}$ C. R. Hagen and A. J. Macfarlane, J. Math. Phys. 5, 1335 (1964).
 ${ }^{8}$ The corresponding concept for SU_{3} was first discussed by L. C. Biedenharn and E. C. Fowler, Nuovo Cimento 33, 1329 (1964).
 ${ }^{9}$ I. S. Gerstein, J. Math. Phys. 6, 469 (1965).
 ${ }^{10}$ Connection with the highest notation is as follows. ${ }^{7}$ The highest weight notation for $\left\{l_{1}, l_{2}, \cdots l_{r-1}\right\}$ is $\left(\lambda_{1}, \lambda_{2}, \cdots\right.$ λ_{r-1}) with $\lambda_{1}=l_{1}-l_{2}, \lambda_{2}=l_{2}-l_{3}, \ldots, \lambda_{r-1}=l_{r-1}$. The allowed λ_{i} are $\lambda_{i} \geq 0(1 \leq i \leq r-1)$ in agreement with Eq. (1.2).

[^3]: ${ }^{11}$ M. Gell-Mann, Phys. Letters 8, 214 (1964).

[^4]: ${ }^{12} \mathrm{H}$. Weyl, Theory of Groups and Quantum Mechanics (Dover Publications, Inc., New York, 1931), p. 381.
 ${ }^{13}$ M. Hamermesh, Group Theory (Addison-Wesley Publishing Company, Reading, Massachusetts, 1962), p. 435.

[^5]: ${ }^{14}$ See G. Racah, "Group Theory and Spectroscopy," Princeton Lectures, 1951 (unpublished), or R. E. Behrends, J. Dreitlein, C. Fronsdal, and B. W. Lee, Rev. Mod. Phys. 34, 1 (1962).
 ${ }^{15}$ D. E. Littlewood, Theory of Group Characters (Oxford University Press, London, 1950), 2nd ed., p. 94.

[^6]: ${ }^{16}$ See D. E. Littlewood, A University Algebra (Heinemann Ltd., London, 1958), 2nd ed., Chaps. 5 and 6; or D. E. Littlewood, Ref. 15, Chap. 6.

[^7]: ${ }^{17}$ D. E. Littlewood, Ref. 15, p. 88.

[^8]: 18 J. Aghassi and P. Roman, preprint (1964).
 ${ }_{19}$ D. E. Littlewood, Ref. 15, p. 89.

[^9]: ${ }^{20}$ H. J. Lipkin, Phys. Letters 9, 203 (1964).
 ${ }^{21}$ P. G. O. Freund and B. W. Lee, Phys. Rev. Letters 13, 592 (1964).

[^10]: ${ }^{22}$ The $I R\left\{l_{1}, l_{2}\right\}$ of $S U_{2}$ has total spin value $J=\frac{1}{2}\left(l_{1}-l_{2}\right)$ and, for an element of $S U_{2}$ with diagonal form

[^11]: ${ }^{24}$ Such series may be derived by the Littlewood method ${ }^{15}$ [originally applied to SU_{3} by A. R. Edmonds, Proc. Roy. Soc. (London) A268, 567 (1962)], or by Speiser's method: [D. Speiser, Proceedings of the Istanbul Summer School, 1962, (Gordon and Breach, Science Publishers, New York, to be published); J. J. de Swart, Rev. Mod. Phys. 35, 916 (1963)] or by use of tensor methods [N. Mukunda and L. K. Pandit, preprint (1964); S. Coleman, J. Math. Phys. 5, 1343 (1964)]. A general Clebsch-Gordan series has been obtained by various methods [M. Moshinsky, Ref. 23; A. Simoni and B. Vitale, Nuovo Cimento 33, 1199 (1964); B. Preziosi, A. Simoni, and B. Vitale, Nuovo Cimento 34, 1101 (1964); L. K. Pandit and N. Mukunda, preprint (1964)].

[^12]: * Research supported by the U. S. Atomic Energy Commission under Contract AT(30-1)-875.
 \dagger Research supported by the U. S. Atomic Energy Commission under Contract AT(30-1)-3399.
 ${ }^{1}$ C. R. Hagen and A. J. Macfarlane, J. Math. Phys. 6, 1355 (1965), previous paper. This paper is referred to as HM in the present work.
 ${ }_{2}^{2}$ An extensive list of references to the $S U_{6}$ theory may be found in HM.
 ${ }^{3}$ F. Gürsey and L. A. Radicati, Phys. Rev. Letters 13, 173 (1964).
 ${ }^{4}$ A. Pais, Phys. Rev. Letters 13, 175 (1964).
 ${ }^{5}$ B. Sakita, Phys. Rev. Letters 13, 418 (1964); and Phys. Rev. 136, B1756 (1964).
 ${ }^{6}$ F. Gürsey, A. Pais, and L. A. Radicati, Phys. Rev. Letters 13, 299 (1964).

[^13]: ${ }^{7}$ M. Gell-Mann, Physics 1, 63 (1964).
 7a M. Moskinsky, J. Math. Phys. 4, 1128 (1963); and T. A. Brody, M. Moshinsky, and I. Renero, ibid. (to be published).

[^14]: ${ }^{8}$ E. P. Wigner, Phys. Rev. 51, 106 (1937); E. P. Wigner and E. Feenberg, Rept. Progr. Phys. 8, 274 (1941).
 ${ }^{9}$ Connection with the highest weight notation is explained in C. R. Hagen and A. J. Macfarlane, J. Math. Phys. 5, 1335 (1964), footnote 11.

[^15]: ${ }^{11}$ Such series can be obtained for any unitary group by the Young diagram method; see D. E. Littlewood, Ref. 10, p. 94.
 ${ }^{12}$ D. E. Littlewood, Ref. 10, p. 104.

[^16]: ${ }_{14}^{13}$ D. E. Littlewood, Ref. 10, p. 105.
 ${ }_{14} \mathrm{M}$. Whippman in a recent investigation of branching rules (preprint, 1964) has also given the result and indicated that it can be made the basis of a recursive derivation of results such as those derived in the present work. See also A. J. Coleman, unpublished notes of lectures given at University of Uppsala, Uppsala, Sweden, 1963.

[^17]: ${ }^{15}$ A further partial check of results can be attained as follows. From the $S U_{2} \otimes S U_{3}$ reduction of $S U_{6}$ IRs (see

[^18]: ${ }^{1}$ E. P. Wigner, Am. J. Math. 63, 57 (1941).

[^19]: ${ }^{2}$ See for instance G. Ya. Lubarskii, The Applications of Group Theory in Physics (Pergamon Press, Ltd., London, 1960), Chap. IV.
 ${ }^{3}$ H. V. McIntosh, J. Math. Phys. 1, 453 (1960) and other references therein.

[^20]: ${ }^{4}$ A. R. Edmonds, Angular Momentum in Quantum Mechanics (Princeton University Press, Princeton, New Jersey, 1957), Chap. 7.

[^21]: ${ }^{5}$ F. R. Gantmacher and M. G. Krein, Oscillatory Matrices and Small Oscillations of Mechanical Systems (in Russian), (Fiz. Mat. Giz., Moscow, 1950).

[^22]: ${ }^{6}$ Such three-pion $I=1$ isospin states have been used for instance by A. J. Dragt, J. Math. Phys. 6, 533 (1965).
 ${ }_{7}$ A. Chakrabarti, Ann. Inst. Henri Poincaré 1, 301 (1964).

[^23]: ${ }^{8}$ M. E. Rose and C. N. Yang, J. Math. Phys. 3, 106 (1962).

[^24]: * Work supported in part by U. S. Atomic Energy Commission.
 \dagger On leave from Service de Physique Théorique, C. E. N., Saclay, B. P. Nr. 2, Gif-sur-Yvette (Seine-et-Oise), France. ${ }^{1}$ W. D. McGlinn, Phys. Rev. Letters 12, 467 (1964).
 ${ }^{2}$ L. Michel, Phys. Rev. 137, B405 (1965).

[^25]: ${ }^{3}$ Whenever two indices, one upper and one lower, appear in the same formula and are equal, they are meant to be summed over; the summing for Greek indices to be from 0 to 3, the summing for Latin indices to be from 1 to n.
 ${ }^{4}$ S. Helgason, Differential Geometry and Symmetric Spaces (Academic Press Inc., New York and London, 1962).

[^26]: ${ }^{5}$ In spite of the simplicity of the lemma, the author was unable to find a simpler proof than this rather lengthy one.

[^27]: ${ }^{6}$ M. E. Mayer, H. T. Schnitzer, E. C. G. Sudarshan, R. Acharya, and M. Y. Han, Phys. Rev. 136, B888 (1964).

[^28]: * This work was carried out under tenure of a Commonwealth scholarship.
 \dagger Present address: CRSR, Cornell University, Ithaca, New York.

[^29]: ${ }^{1}$ Square brackets denote antisymmetrization, e.g., $A_{[a b c]}=(1 / 3!)\left(A_{a b c}-A_{a c b}+A_{b c a}-A_{b a b}+A_{c a b}-A_{c b a}\right)$.
 ${ }^{2}$ F. A. E. Pirani, Acta Phys. Polon. 15, 389 (1956).

[^30]: ${ }^{3}$ F. A. E. Pirani and A. Schild, Bull. Acad. Polon. Sci. 9, 543 (1961).
 ©See for example, J. L. Synge and A. Schild, Tensor Calculus (Toronto University Press, Toronto, 1949).

[^31]: ${ }^{5}$ R. Sachs, Proc. Roy. Soc. (London) A264, 309 (1961).

[^32]: ${ }^{6}$ F. A. E. Pirani, Phys. Rev. 105, 1089 (1957).

[^33]: ${ }^{7}$ J. L. Synge, Relativity, the Special Theory (North-Holland Publishing Company, Inc., Amsterdam, 1956).

[^34]: ${ }^{8}$ F. A. E. Pirani, Proc. Roy. Soc. (London) A252, 96 (1959).

[^35]: ${ }^{\circ}$ W. Kundt, Z. Physik 163, 77 (1961).
 ${ }^{10}$ See H. Bondi, Cosmology (Cambridge University Press, New York, 1952).

[^36]: ${ }^{11}$ J. Goldberg and R. Sachs, Acta Phys. Polon. 22, 13 (1962).

[^37]: * Supported by U. S. Air Force Office of Scientific Research, under AF Grant No. AF-AFOSR-610-64.
 ${ }^{\dagger}$ Present address: The Rockefeller Institute, New York, N. Y.
 ${ }^{1}$ L. Onsager, Phys. Rev. 65, 117 (1944).
 ${ }^{2}$ C. Domb, Phil. Mag. Suppl. 9, 151 (1960).
 ${ }^{3}$ G. F. Newell and E. W. Montroll, Rev. Mod. Phys. 25, 353 (1953).

 4 M. Kac and J. C. Ward, Phys. Rev. 88, 1332 (1952).
 ${ }^{5}$ C. A. Hurst and H. S. Green, J. Chem. Phys. 33, 1059 (1960); A. M. Dykhne and Yu. B. Rummer, Usp. Fiz. Nauk 75, 101 (1961) [English transl.: Soviet Phys.-Usp. 4, 698 (1962)]; P. W. Kasteleyn, J. Math. Phys. 4, 287 (1963).
 ${ }^{6}$ E. W. Montroll, R. B. Potts, and J. C. Ward, J. Math. Phys. 4, 308 (1963).
 ${ }^{7}$ B. Kaufman, Phys. Rev. 76, 1232 (1949).
 ${ }^{8}$ T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 36, 856 (1964).

[^38]: ${ }^{9}$ K. Huang, Statistical Mechanics (John Wiley \& Sons, Inc., New York, 1963), p. 349 ff.

[^39]: ${ }^{1}$ E. Gerjuoy, J. Math. Phys. 6, 993 (1965).

[^40]: ${ }^{2}$ J. O. Hirschfelder, J. Chem. Phys. 33, 1462 (1960).

[^41]: ${ }^{3}$ E. Gerjuoy, Ann. Phys. 5, 58 (1958).

[^42]: ${ }^{4}$ Similar terms are discarded, for the same reason, in the original derivation yielding the form of the many-particle current operator. See Ref. 1, especially Eq. (3.20).

[^43]: ${ }^{5}$ L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Company, Inc., New York, 1955), pp. 114-121.
 ${ }^{6}$ R. Peterkop, Proc. Phys. Soc. (London) 77, 1220 (1961).

[^44]: * University of California at Davis, Mathematics Department, Davis, California.
 ${ }^{1}$ J. W. Gibbs, Collected Works (Longmans, Green and Company, Inc., New York, 1928), Vol. I, p. 321.
 ${ }_{2}$ G. Wulff, Z. Krist. 34, 449 (1901).
 ${ }^{3}$ A. Dinghas, Z. Krist. 105, 304 (1944).
 ${ }^{4}$ Let oa be a vector from some fixed origin to a point a belonging to the set A and, similarly, for ob, $b \in B$. Then, the set of all points c such that oc $=\mathbf{o a}+\mathrm{ob}$ is the Minkowski sum set $A \times \mathrm{B}$ of the sets A, B.

[^45]: ${ }^{5}$ C. Herring, in Structure and Properties of Solid Surfaces, edited by C. S. Smith and R. Gomer (The University of Chicago Press, Chicago, 1953).
 ${ }^{6}$ W. W. Mullins, J. Math. Phys. 3, 754 (1962).
 ${ }^{7}$ L. Lusternik, Compt. Rend. Acad. Sci. USSR 8, 55 (1935).
 ${ }^{8}$ R. Henstock and A. M. MacBeath, Proc. London Math. Soc. Ser. 3 3, 182 (1953).

[^46]: ${ }^{9}$ C. A. Johnson, Surface Sci. (to be published.)

[^47]: * On leave of absence from Institut Henri Poincaré, Paris, France.
 ${ }^{2}$ W. B. Bonnor, Phil Trans. 251, 233 (1959).
 ${ }^{2}$ D. Geissler, A. Papapetrou, and H. Treder, Ann. Physik 2, 344 (1959).
 ${ }^{8}$ H. Bondi, M. G. v. d. Burg, and A. W. K. Metzner, Proc. Roy. Soc. (London) A269, 21 (1962).
 ${ }^{4}$ R. K. Sachs, Proc. Roy. Soc. (London) A270, 103 (1962).
 ${ }^{5}$ E. Newman and R. Penrose, J. Math. Phys. 3, 566 (1962).
 ${ }^{6}$ E. Newman and T. W. J. Unti, J. Math. Phys. 3, 891 (1962).
 ${ }_{7}$ A. Peres, Phys. Rev. 128, 2471 (1962).
 8 A. Papapetrou, Ann. Inst. H. Poincare A1, 117 (1964).
 - A. Papapetrou, Nucl. Phys. 57, 319 (1964).
 ${ }^{10}$ A. Einstein, Berliner Berichte 1918, 154.

[^48]: ${ }^{11}$ F. K. Stellmacher, Math. Ann. 115, 740 (1938).

[^49]: *The results reported in this paper were obtained in the course of research jointly sponsored by the Mathematics Branch of the Office of Naval Research [Contract Nonr$3504(00)]$ and IBM.
 ${ }^{1}$ W. B. Ittner, III, Phys. Rev. 119, 1591 (1960).

[^50]: ${ }^{2}$ A. B. Pippard, Phil. Mag. 41, 243 (1950).
 ${ }^{3}$ W. B. Ittner, III, Phys. Rev. Suppl. 111, 148 (1958).
 ${ }^{4}$ A. W. Duijvestijn, IBM J. Res. Develop. 3, 2, 132 (1959).
 ${ }^{5}$ H. Cohen and W. Miranker, J. Math. Phys. 2, 4, 575 (1961).
 ${ }^{6}$ W. Liniger, J. Math. Phys. 3, 3, 578 (1962).
 7 T. E. Faber, Proc. Roy. Soc. (London) A223, 174 (1954).

[^51]: ${ }^{8}$ L. N. Cooper, Phys. Rev. Letters 6, 689 (1961).
 ${ }^{\circ}$ R. H. Parmenter, Phys. Rev. 118, 1173 (1960).

[^52]: ${ }^{10}$ V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz. 20, 1064 (1950).
 ${ }_{\text {in A A. H. Nethercott, Jr., Phys. Rev. Letters 7, } 226 \text { (1961). }}^{\text {(19 }}$

[^53]: ${ }^{12}$ F. London, Superfluids (John Wiley \& Sons, Inc., New York, 1950), Vol. I.

[^54]: ${ }^{13}$ In Secs. 3, 4 and in Ref. 4 exact solutions to the equations corresponding to (5.8) and (5.8a) were chosen and the boundary conditions were only approximately satisfied. It can be shown that the two approximations are equivalent for very small times.

[^55]: ${ }^{\mathrm{a}} \alpha=10^{8} ; r=3 l / 2 v_{0} ; v_{0}=5 \times 10^{9} ; \xi_{1}=c \zeta_{1} / v_{0}=6 \zeta_{1}$ $\mathrm{cm} / \mathrm{sec}$.

[^56]: ${ }^{1}$ A. S. Eddington, Relativity Theory of Proton and Electron (Cambridge University Press, London, 1935).
 ${ }^{2}$ J. M. Blatt, Theory of Superconductivity (Academic Press Inc., New York, 1964).

[^57]: ${ }^{3}$ A. J. Coleman, Rev. Mod. Phys. 35, 668 (1963).
 ${ }^{4}$ O. Penrose, Phil. Mag. 42, 1373 (1952).
 ${ }^{6}$ O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956).
 ${ }^{6}$ C. N. Yang, Rev. Mod. Phys. 34, 694 (1962).

[^58]: ${ }^{7}$ P. Nozières, The Theory of Interacting Fermion Systems (W. A. Benjamin, Inc., New York, 1964).
 ${ }^{8}$ A. J. Coleman, Can. J. Phys.' 42, 226 (1964).

[^59]: 9 J. M. Blatt, Progr. Theoret. Phys. (Kyoto) 23, 447 (1960). Also see K. Nakamura, ibid. 21, 273 (1959).

[^60]: $\lambda_{r} a_{m-1}(\hat{\sigma} \hat{\tau})+a_{m}(\hat{\sigma} \hat{\tau})=\lambda_{\sigma} a_{m-1}(\hat{\sigma} \hat{\tau})+a_{m}(\hat{\sigma} \hat{\tau})$,
 ${ }_{10}$ The converse statement, that all extreme points of the N-representable 2 -matrix space arise from extreme g^{N}, the truth of which was conjectured in SFDM-I, is false as will be proved in SFDM-III.
 ${ }_{11}$ F. Sasaki, Tech. Note 79, Quantum Chemistry Group, Uppsala, 1962.

[^61]: ${ }^{12}$ A. J. Coleman, Phys. Rev. Letters 13, 406 (1964).

[^62]: ${ }^{13}$ J. M. Blatt and T. Matsubara, Progr. Theoret. Phys. (Kyoto) 23, 451 (1960).
 ${ }_{14}$ A. J. Coleman, Tech. Note 103, Quantum Chemistry Group, Uppsala, 1963.
 ${ }^{15}$ J. Valatin, Phys. Rev. 121, 1012 (1961).
 ${ }^{18}$ P. O. Löwdin, Phys. Rev. 97, 1474 (1955).

[^63]: ${ }^{17}$ E. V. Weber, Vorlesungen über das Pfaffsche Problem, Teubner, Leipzig, 1900; W. Slebodziński, Formes extérieures, et leurs applications, Warsaw 1954; J. M. Thomas, Systems and Roots (Wm. Byrd Press, Richmond, Virginia, 1962); N. Bourbaki, Algèbre (Hermann \& Cie, Paris) Chap. III, (since this work is immortal it is neither possible nor necessary to fix its date.).

[^64]: ${ }^{1}$ J. Ginibre, J. Math. Phys. 6, 238 (1965).
 ${ }_{2}$ J. Ginibre, J. Math. Phys. 6, 252 (1965).

[^65]: ${ }^{3}$ D. Ruelle, Lecture notes of the Theoretical Physics Institute, University of Colorado, Summer 1963.

[^66]: ${ }^{4}$ O. Penrose, J. Math. Phys. 4, 1312 (1963).

[^67]: ${ }^{5}$ D. Ruelle, Rev. Mod. Phys. 36, 580 (1964).

[^68]: ${ }^{\circ}$ J. Groeneveld, Phys. Letters 3, 50 (1962).

[^69]: ${ }^{7}$ P. R. Halmos, Measure Theory (D. Van Nostrand Company, Inc., New York, 1950).

[^70]: ${ }^{8}$ E. Nelson, J. Math. Phys. 5, 332 (1964).

[^71]: ${ }^{9}$ R. Bratu, Bull. Soc. Math. France 42, 113 (1914).

[^72]: ${ }^{10}$ See Ref. 7, Theorem 23 H, p. 97.

